DESCRIPTION DESCRIPTION D

Paper ID 1570904012

Deep Reinforcement Learning Based Bus Stop-Skipping Strategy

Authors: Mau-Luen Tham, Bee-Sim Tay, Kok-Chin Khor, Somnuk Phon-Amnuaisuk

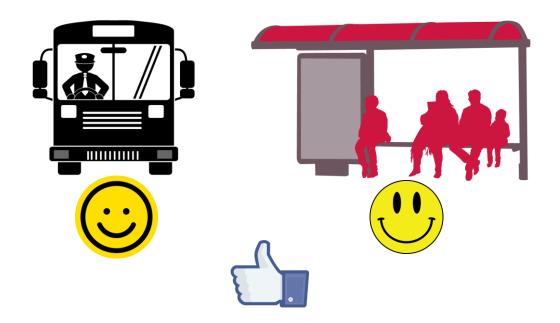
Presenter: Mau-Luen THAM

Wholly owned by UTAR Education Foundation (Co. No. 578227-M) DU012(A)

Introduction

- Static routes cannot accommodate the ever-increasing mobility needs of huge populations [1].
- Stop-skipping strategy is one of the popular public transport route optimization methods [3].

Bus Stop-Skipping Strategy (1 Express and 1 No-Skip)


Ν Waiting 🍟 Waiting Passenger Passenger 3 Waiting Stranded Y Passenger Passenger 2 Waiting Waiting Passenger ىق Passenger ➤ Time Station Express Bus i Passenger Flow **Bus Movement** Regular Bus i+1

ITC-CSCC 2023

The bus stop-skipping scheme starts with express bus i and is followed by a no-skip bus i+1.

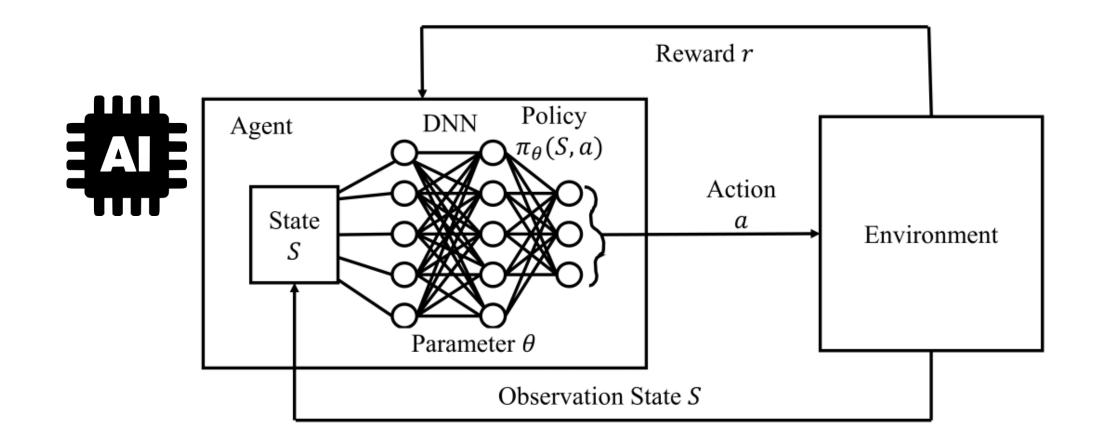
Problem Statement

Optimal tradeoff can be achieved under deterministic scenarios (e.g. history traffic conditions and passenger demands)

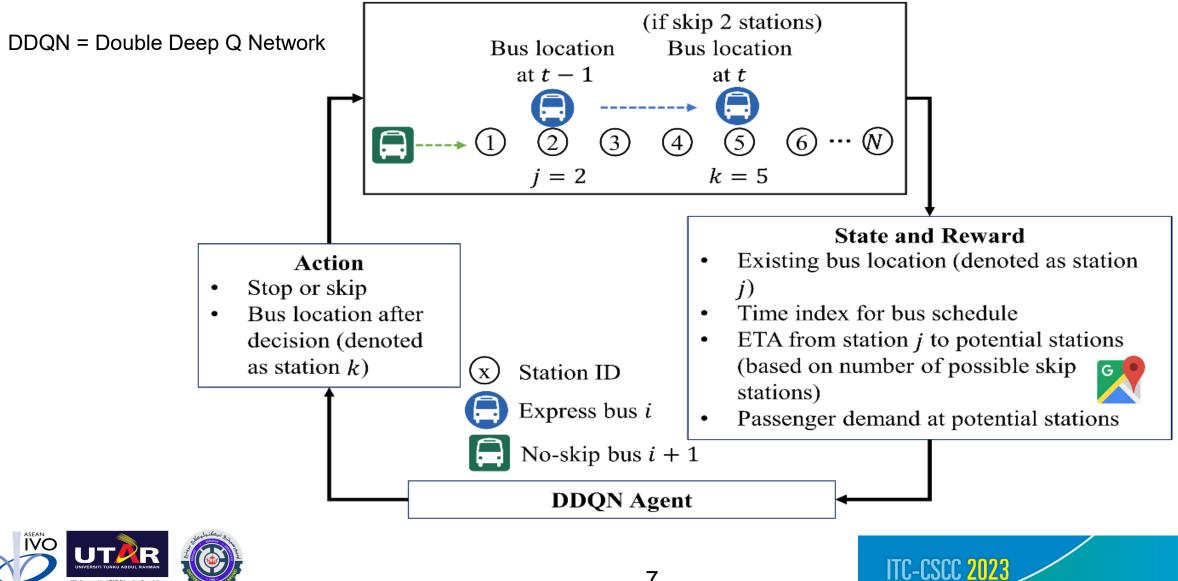
Limitation: Cannot adapt to real-time conditions (e.g. traffic congestion level).

Related Work (Nonlinear Programming)

- In [5], the authors formulated the stop-skipping issue as a nonlinear 0-1 stochastic programming problem. However, they neglected the operating cost incurred by the bus operators.
- To reach an optimal tradeoff between both operators and passengers, the work in [6] formulated another nonlinear integer programming problem. However, the solution was found via a brute-force approach.
- Limitation: These works focuses on solving the bus optimization problems by assuming fixed travel time.


Related Work (Bio-inspired Algorithm)

- The authors in [7] utilized a genetic algorithm (GA) aided by a Monte Carlo simulation. To reduce the risk of passenger service imbalance, they considered bus route optimization comprising of one express lane, followed by another no-skip flow.
- The study in [9] also resorted to a GA approach but considered the factor of imbalanced passenger demand.
- Limitation: Deriving an optimal stop-skipping strategy requires full real-time traffic conditions for all bus stations. It is impractical since the traffic conditions may change when the bus moves to intermediate stops.


5

Proposed Solution (Deep Reinforcement Learning)

System Model

System Settings

Parameters	Values
Number of stations	10
Frequency of express (no-skip) trip per trip	30 minutes
Dispatch interval between express and no skip trip	15 minutes
Learning rate	0.0005
Activation function	ReLU
Number of input nodes	8
Number of hidden layers	3
Number of hidden nodes	832
Number of output nodes	3
Batch size	32
Discount rate	0.4
Experience memory size	5000
Epsilon Decay	0.999

• Average waiting time of boarding

passengers, $\overline{T_{w,k}} = \frac{H_{i,k}}{2}$

- In-vehicle time, $T_{v,jk} = (\tau_{j,k} + t_{j,k}) \cdot \frac{l_{i,j}}{l_{max}}$
- Bus running time, $T_{r,jk} = (\tau_{j,k} + t_{j,k})$
- Number of stranded passengers, $L_{i,k-1}$
- Average waiting time of stranded

passengers:
$$\overline{T_{ws,k-1}} = \frac{H_{i,k-1}}{2} + H_{i+1,k-1}$$

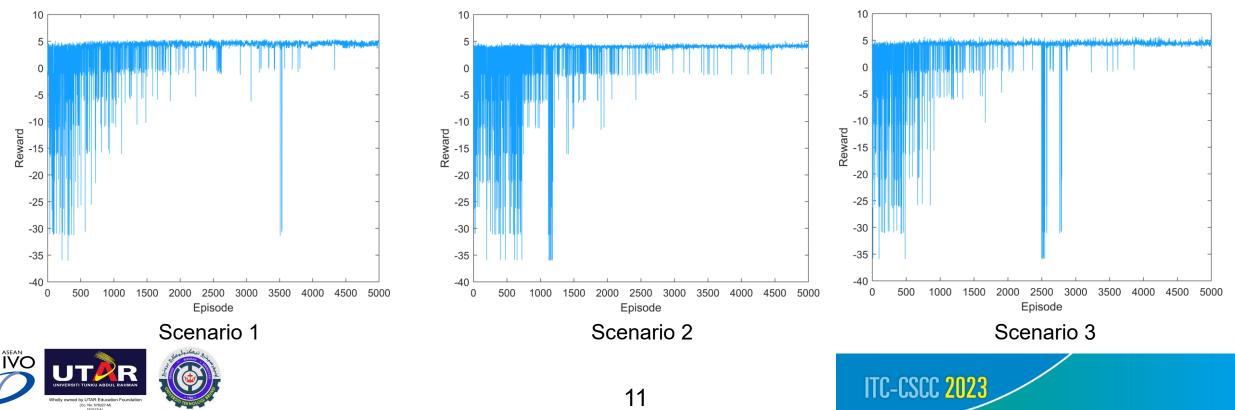
Reward Function

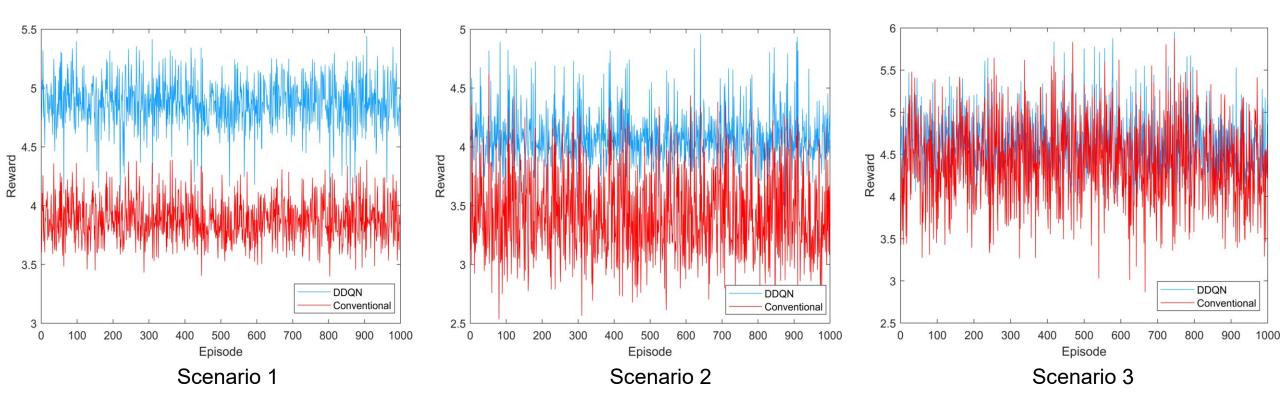
- One episode equals one express bus lane and one no-skip flow.
- The step reward function in the express trip: $R_{t1} = \frac{C_1 P_{i,k}}{C_2 \overline{T_{w,i}} + C_3 T_{v,ik} + C_4 T_{r,ik}} 0.3$
- The step reward function in the no-skip trip: $R_{t2} = C_5 \frac{L_{i, k-1}}{T_{ws, k-1}}$
- An additional reward constraint, R, has been included to incentivize or penalize the agent's decision to reach the terminal station:

$$R = \begin{cases} 5 & \text{, if bus i reached station N} \\ -5 & \text{, if bus i unable to reach station N} \end{cases}$$

Bus Route and Estimated Time Arrival (ETA)

Origin 1			2 3			4 5				6			7			8		9						
Destination	2	3	4	3	4	5	4	5	6	5	6	7	6	7	8	7	8	9	8	9	10	9	10	10
Departure Time																								
07:00:00	933	1168	1535	236	581	837	340	596	737	349	475	392	256	456	889	285	717	1070	479	832	826	350	329	231
07:30:00	851	1083	1423	225	575	827	364	604	736	371	494	399	246	465	894	287	714	1080	479	845	819	352	328	219
08:00:00	830	1062	1413	222	602	827	336	587	715	345	463	373	244	472	892	270	695	1051	478	834	808	324	298	231
08:30:00	850	1067	1414	227	569	836	332	611	767	367	519	388	254	474	910	274	708	1053	469	814	792	323	315	227
09:00:00	807	1001	1350	204	533	909	347	606	772	361	509	388	264	477	954	279	743	1102	493	852	832	348	356	247
09:30:00	786	977	1345	200	580	1112	360	791	987	497	693	506	286	533	1090	293	832	1219	585	972	960	330	336	237
10:00:00	825	1016	1416	195	555	1120	358	978	1226	713	961	846	322	654	1346	333	1018	1425	690	1088	1065	398	376	255
10:30:00	884	1080	1421	183	579	1054	391	943	1203	695	955	784	454	780	1493	444	1177	1559	732	1115	1067	374	342	250
11:00:00	852	1050	1372	208	535	848	320	694	871	461	665	554	352	641	1328	372	1059	1407	751	1096	1063	385	345	249
11:30:00	841	1041	1365	208	531	802	324	603	756	357	563	394	347	564	1137	310	890	1213	679	1002	964	366	353	251
12:00:00	779	981	1319	197	549	782	347	586	684	345	427	392	284	485	982	308	807	1129	592	914	914	340	321	228
12:30:00	767	952	1274	181	516	752	340	572	653	336	414	385	272	461	894	296	731	1064	525	857	828	360	336	229
13:00:00	728	898	1229	186	513	774	326	580	609	334	402	383	264	418	837	301	721	1018	478	774	759	330	301	225
13:30:00	721	893	1217	175	491	735	321	562	584	335	354	371	220	402	793	285	678	937	456	715	700	332	300	227
14:00:00	705	882	1196	176	493	728	318	552	573	327	333	364	203	385	777	277	669	935	438	705	696	284	245	216
14:30:00	693	860	1147	165	455	695	290	532	525	315	300	351	179	381	756	270	646	949	430	733	719	283	270	195
15:00:00	655	813	1102	161	445	684	284	519	503	302	274	345	150	361	728	259	627	894	412	674	673	271	245	179
15:30:00	698	857	1132	152	430	696	278	519	498	300	277	328	164	358	715	246	604	858	405	652	634	226	224	187
16:00:00	567	719	984	141	426	659	285	529	495	305	288	338	169	354	702	253	596	804	392	611	614	236	236	178
16:30:00	542	684	970	140	422	653	281	521	494	288	266	324	151	346	690	244	589	795	381	604	594	223	226	210
17:00:00	497	627	911	146	451	642	304	511	490	305	297	333	156	339	662	227	553	741	361	554	542	204	204	181
17:30:00	486	623	883	150	427	639	276	496	483	270	259	308	143	339	660	217	533	726	330	533	524	204	219	181
18:00:00	506	645	915	152	425	633	272	494	469	278	264	316	141	335	646	222	539	745	348	530	530	175	182	169
18:30:00	485	618	904	152	434	637	281	484	455	250	236	311	117	337	646	220	534	753	338	499	504	160	166	155


10


DDQN Training Results

- Three passenger demand scenarios are considered:
 - Scenario 1: Static passenger demand
 - Scenario 2: Dynamic passenger demand varied with time
 - Scenario 3: Random passenger demand.

DDQN Evaluation Results

• Conventional method adopts two no-skip routes.

DDQN Stop-Skipping Patterns

Scenario 1

Station	0	1	2	3	4	5	6	7	8	9
Boarding Demand	12	8	0	0	0	3	0	0	0	0
Skip (0)/Stop (1)	1	1	0	1	0	1	1	0	0	1
Alighting Demand	0	3	0	2	0	4	4	0	0	10

Scenario 2

Station	0	1	2	3	4	5	6	7	8	9
Boarding Demand	10	0	4	4	1	3	2	0	1	0
Skip (0)/Stop (1)	1	0	1	1	0	1	1	0	0	1
Alighting Demand	0	2	0	3	0	5	4	0	0	9

Scenario 3

Station	0	1	2	3	4	5	6	7	8	9
Boarding Demand	11	10	3	5	4	2	1	1	2	0
Skip (0)/Stop (1)	1	1	0	1	0	1	1	0	0	1
Alighting Demand	0	1	0	4	0	6	5	0	0	13

Conclusions

- A DDQN strategy for optimizing express bus routes based on passenger demand and ETA has been proposed.
- The reward function has been designed to reflect the satisfaction levels of both bus user and operator.
- The proposed scheme outperforms the traditional approach in all three different passenger demand scenarios.

