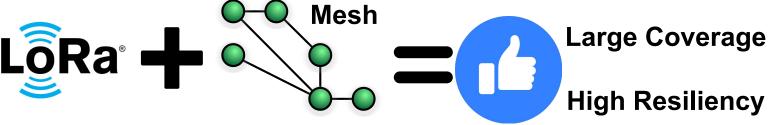
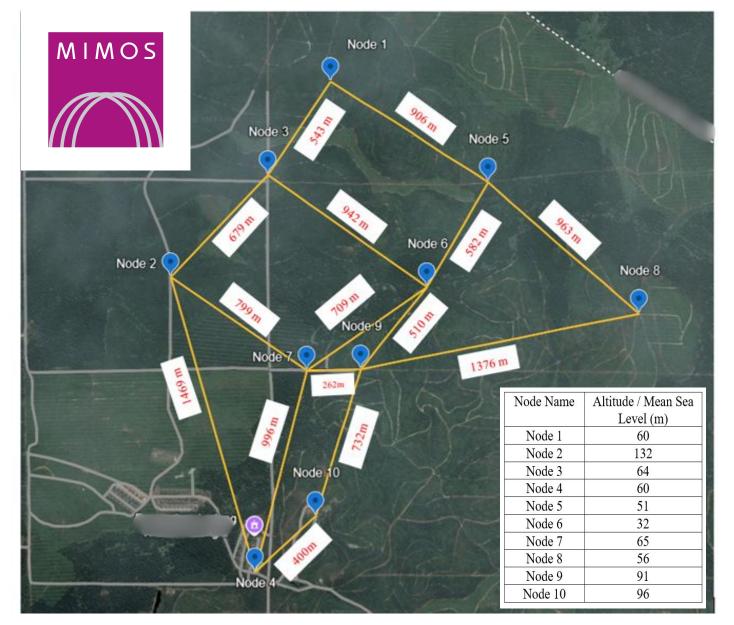


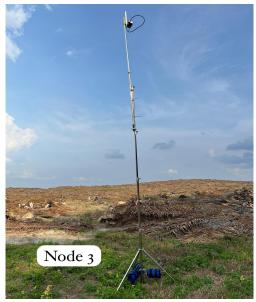
ASEAN IVO 10th Anniversary Celebration September 25, 2025 at Bangkok

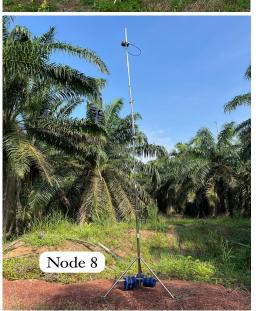
Feasibility Analysis of LoRa Mesh Network Deployment in Rural Areas

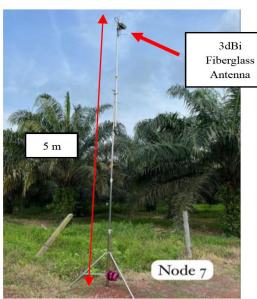

Assoc. Prof. Ir. Ts. Dr. Mau-Luen THAM

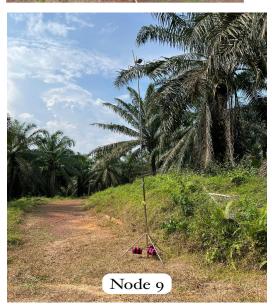
Introduction

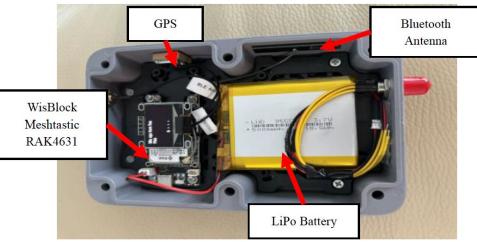



Scalability




Complexity


Site Deployment (Oil Palm Plantation)



Network Configurations

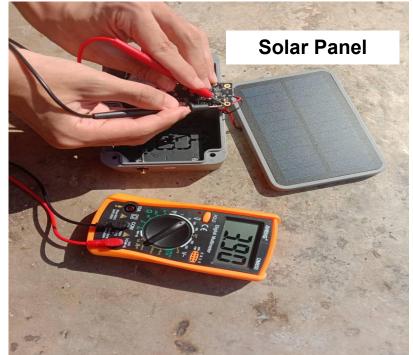


Table 4. Meshtastic configurations.

Parameter	Value				
Frequency	919 MHz				
Bandwidth BW	250 kHz				
Transmission Power P_t	22 dBm				
Coaxial Type	TMS LMR-400				
Coaxial Length	1 m				
Cable Loss L_c	0.1 dB				
Transmit G_t and Receive Antenna Gain G_r	3 dBi				
Node Height (Including Antenna)	5 m				
Maximum Number of Hops	3				
Radio Settings	Short Fast				
RX Boosted Gain	Enabled				
Power Saving Mode	Enabled				
Rechargeable Battery	5000 mAh 3.7 V				
Position Broadcast Interval	30 s				
Telemetry Update Interval	30 s				

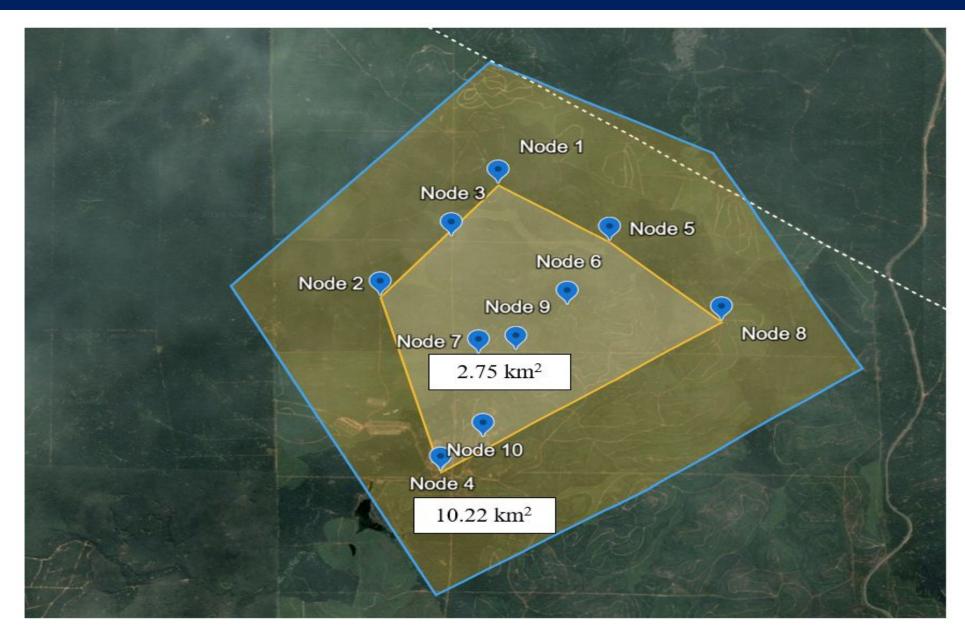
Network Scalability: Hopping Behavior

Channel setting	Alt Channel Name	Data-Rate	SF / Symbols	Coding Rate	Bandwidth	Link Budget
Short Range / Turbo	Short Turbo	21.88 kbps	7 / 128	4/5	500 kHz ¹	140dB
Short Range / Fast	Short Fast	10.94 kbps	7 / 128	4/5	250 kHz	143dB

Distance	Node	Node	Node	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node 10
(m)	1	2	3							
Node 1	,	1216	543	2373	906	1088	1386	1862	1382	2074
Node 2	1216		679	1469	1610	1249	799	2281	1023	1338
Node 3	543	679	17-5	1899	1073	942	954	1920	1032	1642
Node 4	2373	1469	1899	-	2182	1600	996	2236	1098	400
Node 5	906	1610	1073	2182	-	582	1261	963	1089	1801
Node 6	1088	1249	942	1600	582	*	709	1033	510	1220
Node 7	1386	799	954	996	1261	709	-	1634	262	693
Node 8	1862	2281	1920	2236	963	1033	1634	-	1376	1842
Node 9	1382	1023	1032	1098	1089	510	262	1376		732
Node 10	2074	1338	1642	400	1801	1220	693	1842	732	-

^{*}Bold font indicates the longest distance for each row.

Table 5. Routing behavior using Short Fast


	Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node 10
Node 1	1.5	2-3-1	Direct	4-7-1	Direct	Direct	7-10-1	8-10-1	9-10-1	Direct
Node 2	1-3-2		Direct	Direct	5-6-2	Direct	7-3-2	8-7-2	Direct	Direct
Node 3	Direct	Direct	-	Direct	Direct	Direct	Direct	8-7-3	9-7-3	10-7-3
Node 4	1-7-4	Direct	Direct	-	5-7-4	6-10-4	Direct	8-10-4	Direct	Direct
Node 5	Direct	2-7-5	Direct	4-7-5	-	Direct	Direct	Direct	Direct	Direct
Node 6	Direct	Direct	Direct	Direct	Direct	-	Direct	Direct	Direct	Direct
Node 7	1-3-7	Direct	Direct	Direct	Direct	Direct	-	8-6-7	Direct	Direct
Node 8	1-5-8	2-7-8	3-7-8	4-10-8	Direct	Direct	7-6-8	-	Direct	Direct
Node 9	1-7-9	2-7-9	3-7-9	Direct	Direct	Direct	Direct	Direct	-	Direct
Node 10	1-7-10	2-7-10	3-6-10	Direct	5-6-10	Direct	8-9-10	Direct	Direct	-

^{*}The upper row refers to the sending nodes and the most left column refers to the receiving nodes.

Network Coverage

Network Scalability: Hopping Behavior

Node Removal in Chronological Order

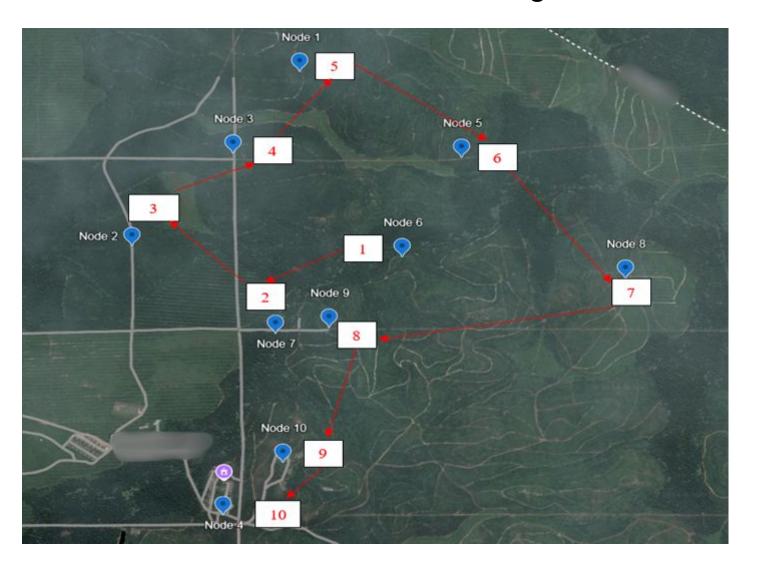


Table 6. Routing behavior during removal process

Sender in	Accumulated	Hopping Path	
Chronological Order	Number of Deployed	12220	
187000	Nodes		
Node 6	10	6 - 2 - 4	
Node 7	9	Direct	
Node 2	8	Direct	
Node 3	7	Direct	
Node 1	6	Direct	
Node 5	5	5 - 10 - 4	
Node 8	4	8 - 5 - 9 - 4	
Node 9	3	Direct	
Node 10	2	Direct	

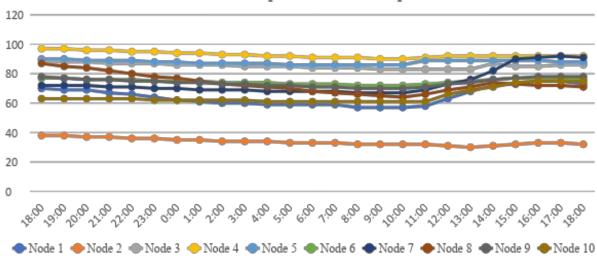
Table 7. RSSI measured when one 'traceroute' command is sent.

RSSI	Node	Node	Node	Node	Node	Node	Node	Node	Node	Node
(dBm)	1	2	3	4	5	6	7	8	9	10
Node 1	8 7 8	-127	-105	-121	-115	-116	-125	-128	-127	-114
Node 2	-126	-	-100	-103	-120	-107	-128	-128	-109	-105
Node 3	-104	-101	- 	-101	-106	-120	-128	-128	-128	-127
Node 4	-128	-103	-103	-	-128	-128	-115	-118	-106	-102
Node 5	-113	-123	-106	-119	-	-101	-108	-113	-110	-116
Node 6	-116	-101	-119	-110	-103	: - :	-123	-115	-107	-124
Node 7	-120	-128	-127	-100	-110	-121		-120	-69	-117
Node 8	-128	-128	-128	-118	-118	-112	-118	X =	-87	-103
Node 9	-126	-125	-128	-110	-113	-107	-75	-90	===	-99
Node 10	-128	-114	-126	-101	-120	-125	-115	-105	-97	-

^{*}The upper row refers to the sending nodes and the most left column refers to the receiving nodes.

Network Performance: Latency

Table 9. Latency between two nodes.


Latency	Node									
(s)	1	2	3	4	5	6	7	8	9	10
Node 1	-	6	3	5	4	4	5	6	6	4
Node 2	6	-	3	3	5	4	6	6	4	3
Node 3	4	3	-	3	4	5	6	6	6	5
Node 4	6	4	3	- 1	6	6	5	5	4	3
Node 5	4	5	3	6	-	3	3	5	4	4
Node 6	4	4	5	4	3	-	5	5	4	6
Node 7	5	6	6	3	4	5	=	6	3	4
Node 8	6	6	6	5	5	5	5	-	3	3
Node 9	6	6	6	4	4	4	3	3	-	3
Node 10	6	5	6	3	5	6	5	3	3	13=

^{*}The upper row refers to the sending nodes and the most left column refers to the receiving nodes.

Energy Performance: Estimated Battery Lifespan

Battery Level for Day 1 (24 hours)

4/11/2024 6pm - 5/11/2024 6pm

With 5000mAh 3.7V battery, the maximum energy capacity stored is

$$5000\text{mAh} \times 3.7\text{V} = 18.5 \text{ watt-hours (Wh)}$$
 (5)

Without any external power source attached to a Meshtastic node, the power drawn from battery for an hour is **0.4082** W. Theoretically, it can sustain up to about 45 hours

$$\frac{18.5}{0.4082} = 45.32 \text{ hours} \tag{6}$$

Assume that the maximum solar charging lies between 12 pm - 3 pm, the total net charging energy capacity is

1.131 W
$$\times$$
 3 hours = 3.393 Wh (7)

Assume that the moderate solar charging lies between 9 am - 12 pm and 3 pm - 6 pm, the total net charging energy capacity is

$$0.208 \text{ W} \times 6 \text{ hours} = 1.248 \text{ Wh}$$
 (8)

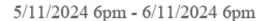
Assume that the zero solar charging lies for the remaining period, the total energy drawn is

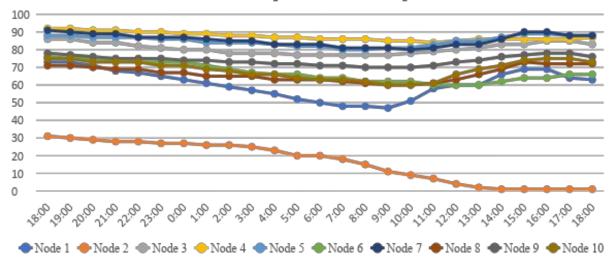
$$-0.4082W \times 15 \text{ hours} = -6.123Wh$$
 (9)

Based on Equations (5) to (9), the battery level after 24 hours can be estimated as follows

$$BatteryLevel_{new} = \frac{18.5 \text{Wh} \times BatteryLevel_{old} + (3.393 + 1.248 - 6.123)}{18.5 \text{Wh}}$$
(10)

To estimate the self-powered duration, Equation (10) is simplified into Equation (11).


$$BatteryLevel_{new} = \frac{18.5BatteryLevel_{old} - 1.482}{18.5} = BatteryLevel_{old} - 0.08$$
 (11)


By setting $BatteryLevel_{old} = a(n-1)$ and $BatteryLevel_{new} = a(n)$, we can utilize recursive arithmetic formula as follows:

2 weeks

Energy Performance: Estimated Battery Lifespan

Battery Level for Day 2 (24 hours)

Given the recursive arithmetic formula:

$$a(n) = a(n-1) - 0.08$$
 for $n \ge 2$, $a(1) = 1$,

Let's determine the specific n where a(n) < 0.

Explicit Formula

To solve this, derive the explicit formula:

$$a(n) = a(1) - 0.08 \times (n-1)$$

Substitute a(1) = 1:

$$a(n) = 1 - 0.08 \times (n-1)$$

Finding n when a(n) < 0

Set a(n) < 0:

$$1-0.08 imes (n-1) < 0$$
 $0.08 imes (n-1) > 1$ $n-1 > rac{1}{0.08} = 12.5$ $n > 13.5$

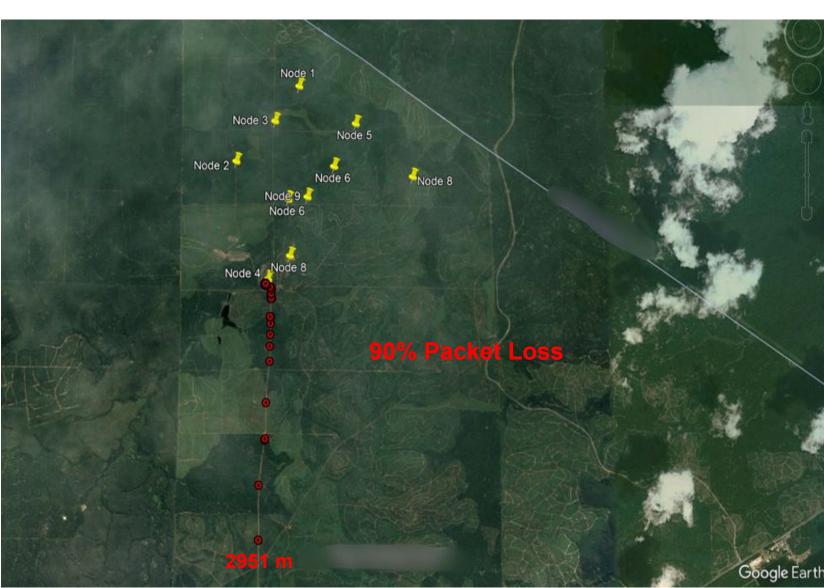
Since n must be an integer, the smallest n where a(n) < 0 is n = 14.

Value at n=14

The corresponding value is:

$$a(14) = 1 - 0.08 \times (14 - 1) = 1 - 0.08 \times 13 = 1 - 1.04 = -0.04$$

Static Scenario: Packet Loss Ratio


Table 11. Packet loss ratio between two nodes when 5 'traceroute' commands are sent.

Packet										
loss	Node	Node	Node	Node	Node	Node	Node	Node	Node	Node
rate	1	2	3	4	5	6	7	8	9	10
(%)									÷	
Node 1	(-	0	0	0	0	0	0	0	0	0
Node 2	40%	-	40%	20%	40%	40%	40%	40%	40%	40%
Node 3	0	0		0	0	0	0	0	0	0
Node 4	0	0	0	-	0	0	0	0	0	0
Node 5	0	0	0	0	-	0	0	0	0	0
Node 6	0	0	0	0	0	-	0	0	0	0
Node 7	0	0	0	0	0	0	-	0	0	0
Node 8	0	0	0	0	0	0	0	- 1	0	0
Node 9	0	0	0	0	0	0	0	0	2:-	0
Node 10	0	0	0	0	0	0	0	0	0	-

^{*}The upper row refers to the sending nodes and the most left column refers to the receiving nodes.

Drive Testing: Packet Loss Ratio

Conclusions

- The LoRa network has a bit rate of 10.94 kbps, which is good enough to support a wide range of IoT applications.
- RSSI lower than -121 dBm will render multi-hopping.
- When choosing the node location, it is conducive to deploy LoRa at those points with high mean sea level.
- The average and maximum one-hop transmission distance among nodes is 1 km and 2 km, respectively.
- The actual latency is found be approximately 3 s per hop. This indicates that the mesh network is not suitable for time-sensitive IoT applications.
- The solar-powered node can still operate well in harsh environments, where rains and heavy clouds exists.
- The network lifetime can last for almost 2 weeks without any external power supply.

Adjunct Professor Mau-Luen THAM thamml@utar.edu.my

General Manager – Head of Al Research Berjaya Corporation Berhad

mauluen.tham@berjaya.com.my