NICT has been engaged in R&D in five strategic areas characterized by five keywords: observe, connect, create, protect and pioneer. Five research institutes lead these R&D efforts. The Advanced ICT Research Institute is carrying out advanced basic research with a pioneering spirit, aiming to open up new horizons in ICT research.

The Fifth Medium to Long-term Plan has been adopted in April 2021. Our area of R&D focus changed from frontier research to frontier science research. The term “science” is added to heighten expectations for us to make significant breakthroughs by performing cutting-edge R&D. We view ourselves as pioneers exploring the frontiers of science.

CiNet in Suita, Osaka is transferred to our institute in Kobe, Hyogo and Koganei, Tokyo. This arrangement has made the Advanced ICT Research Institute the largest research organization within NICT and has expanded our R&D capabilities.

The Advanced ICT Research Institute is working to create and develop innovation beyond conventional concepts.

"Creating and developing innovation beyond conventional concepts"

Director General, Advanced ICT Research Institute
Wada Naoya, Ph.D.

Organization Chart of the Advanced ICT Research Institute

Advanced ICT Research Institute (Director General)

General Planning Office (Kobe)

Kobe Frontier Research Center
- Planning Office
- Superconductive ICT Device Laboratory
- Nano-scale Functional Assembly ICT Laboratory
- Bio-ICT Laboratory
- Neuro-ICT Laboratory
- DUV ICT Device Laboratory

Koganei Frontier Research Center
- Planning Office
- Quantum ICT Laboratory
- Terahertz ICT Device Laboratory
- Green ICT Device Laboratory

Center for Information and Neural Networks (Chief)
- Planning Office
- Brain Networks and Communication Laboratory
- Brain Function Analysis and Imaging Laboratory
- Neural Information Engineering Laboratory

Frontier ICT
- Superconducting integrated circuit technology
- Nano-hybrid technology
- Terahertz ICT device technology
- Research and development of ICT mimicking intelligence in nature
- Research and development of Bio-ICT

Advanced ICT Device
- Oxide semiconductor electronic devices technology
- DUV ICT device technology

Quantum ICT
- Quantum secure network technology
- Quantum node ICT technology

Neural ICT
- Advanced brain measurement and analysis
- Neural information and communication R & D base of Neural Information and communication technology

The Frontier
Explore New Fundamentals for Future ICT

We explore new concepts and new technologies that will produce the novel paradigms of future ICT. We also promote research collaboration between industry, academia and government.
Our laboratory has two main R&D projects. One is the development of quantum photonic network technology, which includes quantum key distribution networks for realization of secure encryption in the future and free-space quantum optical communication enabling to choose the optimal balance between transmission efficiency and security for various applications. The other project involves quantum node technology and includes more fundamental research, such as investigation of quantum optical control techniques, quantum interfaces between photons and artificial atoms, and quantum metrology. These elements will eventually be integrated to develop novel functionalities in future communication networks. Our projects have a high priority, extending from new theoretical developments and proof-of-principle experiments to field trials using network testbeds. Thus, we aim to contribute to society through both fundamental science and industrial technology.

Quantum ICT Laboratory

We have discovered qualitatively new states of a superconducting artificial atom dressed with virtual photons. We used a micro-fabricated superconducting harmonic oscillator and an artificial atom (quantum bit: qubit), which has electronic states that follow quantum mechanics like a natural atom. We carefully designed a superconducting persistent-current qubit and oscillator with an LC harmonic oscillator that has a large zero-point fluctuation current via a large Josephson inductance. Then we used spectroscopy (Right) to identify a new ground state like the stable natural atom. We carefully designed a superconducting persistent-current qubit and oscillator with an LC harmonic oscillator that has a large zero-point fluctuation current via a large Josephson inductance. Then we used spectroscopy (Right) to identify a new ground state like the stable natural atom.

Quantum ICT Laboratory Macroscopic Quantum Physics Project

NICT started the fifth mid-term plan from 2021 to 2025. Koganei Frontier Research Center was newly installed under Advanced ICT Research Institute at the headquarters in Koganei, Tokyo. Three laboratories in the research center work on the cutting-edge science and technology as “frontiers” in the ICT field. Quantum ICT Laboratory develops a secure network with quantum key distribution by using quantum behavior of photons, and conducts fundamental research on control and measurement technologies of photons and materials based on quantum mechanics. Terahertz ICT Devices Laboratory studies new semiconductor devices available at the ultra-high frequency bands, and develops wireless communication systems with the devices for broad-band communications superior to the fifth generation. Green ICT Device Laboratory pursues new-function electronic devices with high-efficiency semiconductor materials derived from gallium oxide for decreasing environmental load.

Green ICT Device Laboratory

With the aim of developing 100-Gbps wireless communication systems using terahertz waves, the project is involved in research on electronic devices suitable for terahertz frequencies and measurement technology to evaluate such terahertz devices. We are focusing on the development of high electron mobility transistors (HEMTs) composed of several semiconductor materials. These materials include indium phosphide (InP) that shows the highest operating frequency among recent technologies, gallium nitride (GaN) that has high resistivity to voltage, heating, and radiation, and silicon germanium (SiGe) that is easy to combine with commercial silicon technologies. We are also exploring some new materials for future terahertz electronic devices, such as indium antimonide (InSb) and graphene among others. With regard to research on terahertz transistors, an early prototype of a 300-GHz 100-Gbps transmitter has been created based on a silicon integrated circuit, and we are involved in ongoing research to achieve higher performance.

Koganei Frontier Research Center

Experimental setup
a. The chip mounted on a sample holder b. Laser diode with monochromatic light connected to the circuit comprising a superconducting qubit c. A superconducting He-4 fluid

Transmission spectrum
- Calculated transition frequencies
- Experimental results
- Calculating strength values are given in the panels.

Multi-GHz optical frequency comb

The terahertz wave photonics project has the aim of developing key devices technologies, such as signal sources and detectors, which are expected to be employed in 100 Gbps-class wireless communication systems and high-precision measurement systems working in the terahertz frequency and (sub-)millimeter wavelength regions. In particular, we are focusing our R&D on narrow linewidth and highly stable light sources (and on terahertz wave generation with these devices), which can be used for both high-capacity wireless communications and wideband spectrum measurement. Through our R&D activities, we hope to contribute to the realization of terahertz technologies involved in processes such as:
- Handling terahertz wave correctly (e.g. real-time processing of ultra-high-speed signals)
- Controlling terahertz waves accurately (e.g. advanced modulation for high-speed/high-capacity communication)
- Measuring terahertz waves precisely (e.g. high-precision broadband spectrum measurement up to the spurious band)
Established in 1989 as the Kansai Branch (now Advanced ICT Research Institute) of the Communications Research Laboratory (now NICT), the Kobe Frontier Research Center has been newly established under the Advanced ICT Research Institute as a unit in the field of Kobe-based research laboratories.

Our five laboratories are engaged in research on frontier ICT technologies and new ICT device technologies that create novel materials, structures and functions that lead to outstanding ICT functions, and bio-ICT technologies that elucidate and utilize biological mechanisms with a history of billions of years. The Kobe Frontier Research Center is creating Innovative ICT research that is not an extension of existing technologies.

We have developed an ultrastable single-photon detector, a THz detector, and an integrated circuit operating at ultra-low power by using superconducting phenomena. Our unique research approach employs a niobium-nitride (NbN) superconductor, which has a higher superconducting transition temperature than the conventional niobium (Nb) superconductor, allowing higher operating temperatures and frequencies. Due to the requirement of cooling for operation of superconducting devices, we rarely see superconductors used in commercial products. However, ultrastable, low noise detectors based on our NbN thin films have already been employed in the ALMA radio telescope constructed in Chile with the cooperation of Japan, the EU, and the USA, and are also used in a quantum key distribution system that is expected to become a completely secure communication system in the future. We will spread information about the excellent performance of our superconducting devices and contribute to innovation by developing new applications of our superconducting technologies and promoting collaborative research with scientists in various fields.

In information and communication networks, which are the infrastructure of industry and society, high speed and large capacity are required at all scales from long-distance communication to short-distance optical interconnection. In order to increase the speed, it is necessary to use terahertz waves and light waves in wireless communication and to develop high-speed optical transmission / reception technology of over 100 Gb/s. In our laboratory, we aim to enhance the functionality and integration of light control devices by combining an organic material with excellent light control properties and nanophotonic structures using organic high index materials with high optical confinement functions. Also, we will research and develop basic technologies for controlling organic-inorganic interfaces and structures at the atomic and molecular levels in order to enhance the functionality of devices and develop new functions at the material level. Organic molecules exhibit large optical nonlinearity due to the resonance interaction among n electrons bound within a nanoscale single molecule and the electric field of light. Organic electro-optic (EO) polymers, which exhibit particularly large EO effects, are expected as new materials that realize high speed and low power consumption of light control devices such as optical modulators and radio-light conversion devices that are indispensable for optical communication systems. On the other hand, silicon optical integrated circuits using mature semiconductor microfabrication technology are being put into practical use. Based on hybrid technology of organic EO polymer and silicon nanofabrication, we are working on development of ultra-small optical modulators with high speed and low power consumption, light control devices such as optical phased arrays that integrate them, terahertz generators / detectors, etc.

We are exploring a new ICT paradigm based on the information and communications of living cells by carrying out investigations in the following three areas.

1. **Development of bio-imaging technology**
 - We are developing fluorescent microscope technology that can visualize the behavior of target molecules in living cells at ultra-high resolution to monitor information flow inside cells. Fluorescent microscopy is one of the most essential technologies for utilization of cellular ICT.

2. **Construction of intracellular structures and control of cellular function**
 - We are developing the technology to construct artificial structures in living cells that will allow us to control cellular function. Construction of functional artificial organelles in cells will enable us to create various artificial cells that can act as sensors for specific substances, perform drugs screening, and generate various useful materials.

3. **The genetic information system in cells is an excellent product of biological evolution for 3.5 billion years. We are clarifying the regulatory principles and molecular mechanisms of the genetic information system in order to create new ICT based on the cellular systems.**

The Protein Biophysics Project is conducting research and development activities that will lead to new concepts for information and communication technologies by learning from biological systems. Our research targets range from biomolecules up to the cellular network level. By measuring, analyzing, and controlling a wide range of biological materials, we are trying to understand and reproduce various biological functions. Our research activities include the following projects.

1. **Reproduction of cellular and biomolecular sensing mechanisms:** We are trying to reproduce the systems for detecting information transmitted by chemical substances by combining the functions of living cells and machine learning techniques.

2. **Research on biomolecular machines:** We are analyzing the structure and functions of biomolecular machines by employing state-of-the-art technologies in order to understand how they work. We are also trying to understand and reproduce biomolecular machines based on techniques for engineering biomolecules.

3. **Research project on biomolecular systems:** We are exploring the mechanisms underlying the formation of self-organized structures and their functions based on interactions among biomolecules.

The DUV ICT Device Laboratory is conducting R&D on deep-ultraviolet ICT devices with the aim of dramatically expanding the optical wavelength bands available for information and communications, as well as creating innovative optical ICT applications such as solar-blind optical communications that goes beyond the framework of existing visible and infrared optical communication technologies. Besides, we are also developing advanced technologies, including nanophotonic structure, semiconductor device, and practical technologies, to realize high-compact, environmental-friendly, and high-power deep-ultraviolet light-emitting diodes (DUV-LEDs), which can be used to create a safe, secure and sustainable society. We will also play a crucial role in the social development in the age of the New Normal with COVID-19. We have successfully demonstrated DUV-LEDs with light output power of over 520 mW (λ=265 nm), which has significantly updated the world record, and are working to further improve its performance. By taking up the challenge of breaking through the limitations of conventional DUV-LEDs, we anticipate that these advances will bring technological innovations in a wide range of fields, from information and communications to the environment, health and safety, and healthcare.

The DUV-LEDs have successfully demonstrated the ability to emit light at two different wavelengths within the deep-ultraviolet band, which is critical for security applications such as anti-counterfeiting technologies and pest control. The DUV-LEDs are also being explored for use in biological research, with potential applications in diagnostic tools and medical devices.

In conclusion, the Kobe Frontier Research Center is a vital hub for innovative research and development activities that will shape the future of information and communication technologies.
The Center for Information and Neural Networks (CiNet) is a neuroscience technology research institute based in Suita City, Osaka, Japan, and aims at creating new ICT that will enable ultimate communication and the fulfillment of human potential through the collaboration of three laboratories, the Brain Networks and Communication Laboratory, the Brain Function Analysis and Imaging Laboratory, and the Neural Information Engineering Laboratory.

For this aim, we measure brain activity during various tasks using the latest functional brain imaging technology, accumulate large-scale data on brain activity, and analyze it using machine learning technology.

We believe that we will ultimately be able to reproduce how the brain understands, feels, judges, and acts upon a wide variety of input information by modeling the entire brain function. By utilizing this model, we aim to realize advanced ICT technologies such as next-generation communication, sensibility and emotion evaluation, social behavior prediction, and brain-machine interface.

The CiNet building was built in March 2013 on the Suita Campus of Osaka University, and is equipped with the latest brain function measurement machines such as 7T-MRI. In collaboration with Osaka University and many other universities, research institutes, and companies in Japan and abroad, the CiNet offers an interdisciplinary research opportunity for neuroscience, information science, bioengineering, and robotics and so on.

The Memory Neurobiology Project is making Collaborators to establish basic mechanisms of memory using a fruit fly (Drosophila melanogaster) as a model animal, which allows us to perform genetic analysis at the single cell level. Although "memories" in computers are daily used devices, memory in our brain is not well understood because nobody has witnessed plastic processes when memories are formed. Our project involves real-time observation of memory formation on the "Feeding neuron", which commands feeding behavior of fruit flies, during Pavlovian conditioning. Through direct observation, we will study molecular and cellular mechanisms involved in memory formation. Understanding mechanisms of memory will allow us to design devices that mimic plasticity underlying memory formation. By connecting such devices, we are preparing to build circuits that may function for artificial intelligence in a similar way to that used in our brain.

In this context, we are preparing to build circuits that may function for artificial intelligence in a similar way to that used in our brain.
Distinguished Researcher Kazuhiro Oiwa, Ph.D.

Dr. Kazuhiro Oiwa joined the National Institute of Information and Communications Technology (NICT, former CRL) at Kobe, Japan in 1993, and he has achieved various landmark results in research on the biophysics of protein motors (biomolecular machines) using in vitro reconstitution systems and single-molecule measurements. Outstanding among his research achievements is a model of the force generation mechanism of the protein motor, dynein, which was proposed on the basis of biophysical and structural studies. His model has led to various important research projects and the results have greatly contributed to the progress of this research field. His research papers have been cited more than 400 times in leading scientific publications. As a research group leader, he has applied his knowledge and techniques to understanding the mechanical properties of protein motors and has published more than 50 papers in leading scientific journals, such as Nature and Cell. He has also applied his knowledge of protein motors to the development of nanometer-scale devices and nanometer-scale communications (also known as molecular communications) and to understanding of ensemble behavior of self-propelled particles and resultant pattern formation (tentatively named natural intelligence). After serving as the Director General of the Advanced ICT Research Institute at NICT from 2008 to 2013, he is currently a Distinguished Researcher and Fellow of NICT. He was awarded the 23rd Osaka Science Prize in 2005 and Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology in 2010.

Research & Development Advisor of CiNet Toshio Yanagida, Ph.D.

Prof. Toshio Yanagida has established a technique for observing, manipulating, and measuring the dynamic properties of protein motors at the level of single molecules with extremely high spatial resolution at the nanometer level, temporal resolution at the millisecond level, and force detection at the piconewton level. Based on this research, he established the “Yuragi principle,” which states that biomolecules effectively utilize thermal fluctuations for energy-saving and highly efficient energy conversion. Through molecular, cellular, and brain function measurements, he showed that this “Yuragi principle” is unique to living organisms that have acquired energy-saving, flexible, and autonomous working cellular, and brain function measurements, he showed that this “Yuragi principle” is unique to living organisms that have acquired energy-saving, flexible, and autonomous working mechanisms at the expense of precision, and that it can be applied to all levels of biological activities driven by protein molecules. In 1998, Prof. Yanagida became a leader of the “Information and Communication Breakthrough Basic Research 21” project and led the Brain Function Group of the Advanced ICT Research Institute. Since then, Prof. Yanagida has pioneered a new research field at NICT that combines cognitive science and information science, and in 2011, he established the Center for Information and Neural Networks (CiNet) and became its first director. Prof. Yanagida led this research for 11 years, bringing together talented individuals from around the world to establish a foundation for promoting integrated research on cognitive sciences and information and communication technology. Furthermore, under the slogan of “Omori research,” Prof. Yanagida drew out the abilities of his researchers and produced many pioneering achievements in such fields as brain information decoding, computational social neuroscience, cognitive sensorimotor control and learning, and perceptual information processing. As indicated by his receipt of the Imperial Prize and the Japan Academy Prize and his election as a Person of Cultural Merit and a member of the Japan Academy, these original research achievements and leadership have been highly acclaimed in Japan and abroad. Prof. Yanagida became a NICT Fellow in 2022 and energetically continues his research on information processing in the brain using “Yuragi.”
Further development and increased sophistication of Information and Communication Technology (ICT) is required to allow all people and things to be connected to networks, to freely utilize a large amount of content, and to lead a safe life based on access to a diverse range of information, as well as to achieve a world of abundance based on progress of sophisticated informatization. In particular, advanced and sophisticated systems are required to achieve such a world, and it is crucial to conduct research and development on areas that form the foundation of these systems, such as state-of-the-art optical device technologies, high-frequency millimeter wave and terahertz wave technologies, convergence photonic and high-frequency technologies, and creation of new materials. Selection and concentration of topics have progressed with research and development supported by society, particularly by industry, while funding for cutting-edge research and development of challenging devices has decreased. This is primarily because funding of such research is usually based on a medium to long-term perspective and involves high risk, leading to uncertainty regarding future technological development capabilities. Against such a background, the National Institute of Information and Communications Technology (NICT) is a research organization for information and communication technology that displays a high degree of neutrality and support for the public interest. NICT considers it important to improve the framework for promoting research and development by widely promoting the newly established Advanced ICT Device Laboratory while maintaining strong collaboration with industry and academia.

We would like the Laboratory to evolve into an open research base where members of industry, academia, and the government can collaborate on research that advances the information and communications fields. In order to ensure that both domestic and international researchers can fully utilize this basic framework, we will devise ways to continually improve maintenance and operation of the facilities and equipment on a daily basis. In order to improve access to this research and development environment, the facilities will be available to individuals outside NICT who can conduct research at NICT primarily under a joint research framework.

Outline of the Laboratory

Teams of experienced engineers and relevant internal research groups at NICT coordinate with each other to appropriately manage the facility so that users can enjoy a stable and safe work environment that meets standard requirements. Research and development at NICT encompasses the entire spectrum of ICT technologies, featuring the promotion of research on fundamental device technologies with an emphasis on the development of sophisticated information and communication systems at the Advanced ICT Device Laboratory.

Advanced ICT Device Laboratory, Kobe Branch

Construction of the Clean Room at Kobe City, a new facility for promoting research and development that is operated as a unit of the integrated CleanRoom facility at NICT headquarters, was completed in July 2015 and full-scale operation commenced in April 2016. The facility has class 1000 film-forming chambers, nanofabrication chambers, and class 1000 exposure chambers. It will be used to develop next-generation information and communication technologies, including a variety of devices required to create superconducting materials and organic nanomaterials as well as to evaluate the characteristics of thin films and devices. More specifically, the laboratory has a load-lock type vacuum film-forming device that is capable of fabricating devices with multiple layer structures, an atomic layer deposition device capable of controlling thin-film thickness at the atomic scale, an electron beam lithography system that can draw a minimum line width of tens of nanometers, a reactive ion etcher that performs etching on the nanometer scale, and an indium-vapour coupled plasma (ICP) etcher. The facility also has other devices that have been uniquely customized by researchers to perform specific functions. We aim to operate a world class facility that can be fully utilized to develop breakthroughs in information and communication technology.

Introduction of Related Departments

Advanced ICT Device LABO Network Research Institute

Quantum ICT Collaboration Center

The Quantum ICT Collaboration Center was established in April 2021 with the aim of advancing R & D in the areas of quantum security, convergence and satellite communications, as well as leading the construction of a quantum technology platform that integrates quantum computing, quantum communications and cryptography, and quantum measurement and sensing. In cooperation with related research groups within the NICT, we will actively collaborate with other quantum innovation centers, universities, companies, and public organizations in Japan and overseas, and work on everything from basic research to technology verification, open innovation, and human resource development.

In January 2020, Integrated Innovation Strategy Promotion Council of Japan formulated Quantum Technology Innovation Strategy. This strategy aims to create a quantum innovation hub in Japan that will bring together excellent researchers and engineers from Japan and abroad, attract active investment from companies, and build an organic collaboration and cooperation system between universities and companies. NICT has also been selected as the Quantum Security Innovation Hub, one of the eight quantum innovation hubs in Japan. The Quantum ICT Collaboration Center will serve as the core organization of the hub in NICT.

PANDA Remote Sensing Laboratory

The Remote Sensing Laboratory of the Radio Research Institute develops remote sensing technologies, and promotes R&D to improve the accuracy of predicting sudden atmospheric phenomena. In 2014, the Phased Array weather radar and Doppler lidar Network DAta system (PANDA) was installed on a 20 m tower in the site of the Advanced ICT Research Institute. PANDA has been developed to predict sudden torrential rain by using data fusion technology with multiple remote sensing sensors.

Kobe substation for Japan Standard Time system, Space-Time Standards Laboratory, Electromagnetic Standards Research Center Radio Research Institute

NICT generates national frequency standards and Japan Standard Time (JST), and also disseminates them throughout Japan. While the ensemble of atomic clocks as a basis of the reference time scale for JST is operated exclusively at NICT headquarters in Tokyo, we now operate the atomic clocks also in Kobe to enhance the capability, reliability and disaster resilience of JST system. We also operate them for the study of clock ensemble system using the clocks in Tokyo, Kobe and two radio-clock stations.

Free-Space Optical Communication System, Space Communication Systems Laboratory, Wireless Networks Research Center Network Research Institute

A small ground station was designed to perform free-space optical communications with an aircraft using near-infrared laser beams. The main part of the ground station is shown on the left of the picture, comprising the gimbal for tracking the target and the optical equipment for transmitting and receiving the laser beams. This system can track a mobile terminal installed onboard an airplane or a helicopter and can perform high-speed optical communications with data rates up to 40 Gbps.