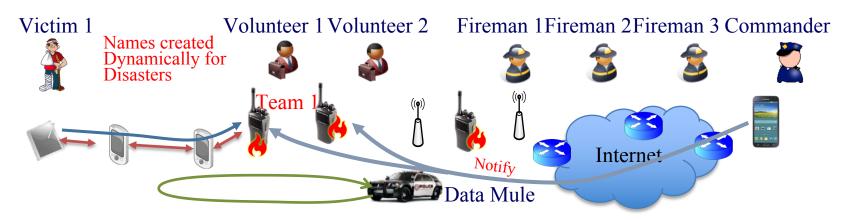
Resilient Disaster Communications in the Social-Media Era

JUNO-2 Kick-off Meeting

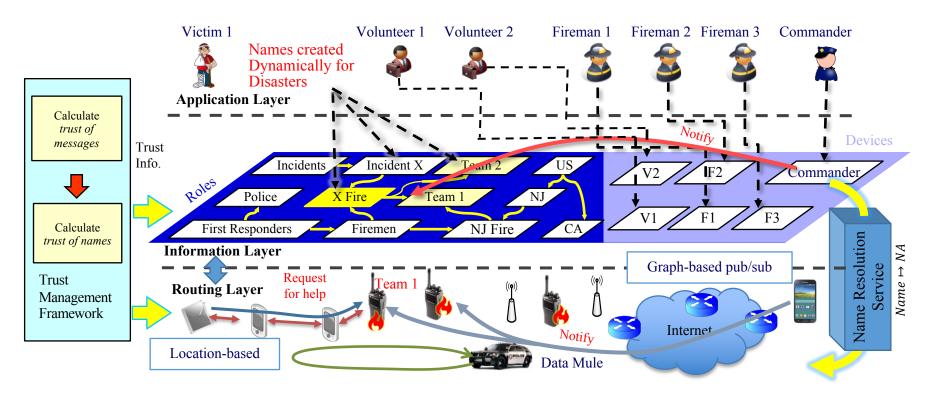
October 25, 2018

K. K. Ramakrishnan University of California, Riverside Toru Hasegawa, Yuki Koizumi Osaka University Masakatsu Nishigaki, Tetsushi Ohki Shizuoka University Yoshinobu Kawabe Aichi Institute of Technology



Importance of Communication for Disaster Management

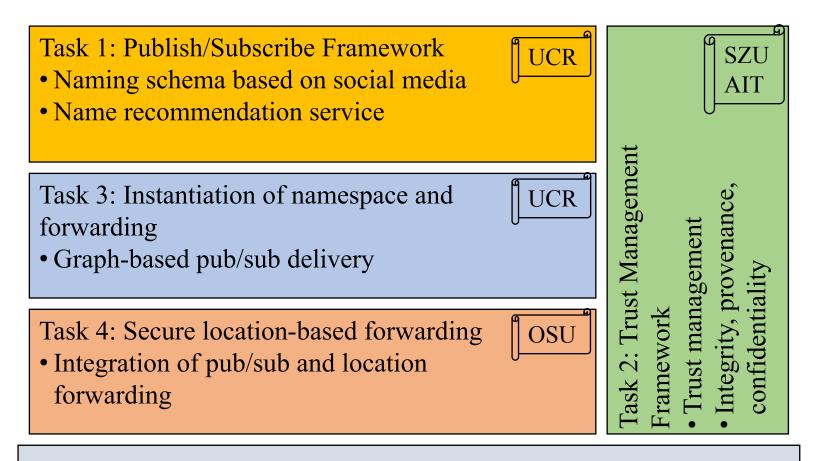
- Communication is key to improving outcomes in the aftermath of a disaster
- Keys to an effective response to a catastrophic incident:
 - Effective communication within and among dynamically formed first responder teams
 - Public safety teams comprising: law enforcement, health, emergency, transport and other special services, depending on the nature and scale of the emergency
- First responders are not the only ones that can help. Increasingly, volunteers are playing a significant part in disaster management
- Lack of personnel to support emergency
- In the aftermath of a disaster, likely to face communication challenges
 - Infrastructure may be impacted
- Complement with social media with data communications: Security?
- Security and Resiliency are major concerns
- <u>Project Objective:</u> A network architecture for information and communication resilience in disaster management that is also secure; integrate volunteers; include social media


System Model and Assumptions

- Network Model
 - Enhanced Information Layer building on Information Centric Networking (ICN) concepts, with a Publish/Subscribe service
 - Multi-hop communication to allow communication even in fragmented networks, and disruptions
- Security Model
 - Honest Players: First responders and incident commander
 - Potentially Dishonest Players: Volunteers and Victims
 - No long term history/reputation available for use as basis of trust
- Safely manage information flow and support rescue efforts

Proposed System Architecture

- Information Layer (Role-Based) Communication
 - Facilitate communication: dynamically formed first-responder teams
 - Communication based on dynamically created roles, not network locations
 - Include citizens, including victims and volunteers willing to help
- Secure and resilient; integrate social media communication into an Information Centric Networking (ICN) framewrork


Challenges

- Challenge 1: Designing a naming and forwarding framework in dynamic disaster environments, focusing on communication among honest first responders, and including trusted volunteers and victims
- Relationships among participants are dynamic and, often, transient
 - <u>Task 1</u>: Instantiation of namespace
 - Naming scheme for players in disasters
 - Graph-based naming scheme: Multi-rooted tree structure for representing multiple organizations
 - <u>Task 2</u>: Publish/Subscribe Framework and forwarding
 - Publish/Subscribe forwarding mechanism for graph-based name prefixes
 - Name prefix distribution to routers and participants

Challenges - continued

- Challenge 2: Security and resiliency against dishonest volunteers when the root of trust is lost
 - <u>Task 3</u>: Trust management
 - Managing trust of volunteers and victims without using any certification authority
 - Providing trust information, with first-responders choosing the method for secure communication
 - <u>Task 4</u>: Secure location-based forwarding
 - Protecting privacy (names) of first responders from volunteers
 - Extending the forwarding framework against malicious forwarders (volunteers) in ad-hoc and disruptive environments

Project Management

Task 5: Integration, Experimentation and Evaluation

UCR: University California, Riverside OSU: Osaka University SZU: Shizuoka University AIT: Aichi Institute of Technology

Collaboration and Joint Research Efforts

- Build on long (6-7 year) history of collaboration among several members of the team
- Expect to have bi-weekly or monthly calls between PIs
 - Include students as and when progress is being shared and ensure all are in synch.
- Relatively frequent face-face meetings
 - Already had one face-face kick-off meeting in UC Riverside in Aug. 2018
 - Will meet here in Tokyo during this visit
- Where possible, have students from participating institutions visit for an extended period of time to enable closer sharing of artifacts, development of prototype.

Publish/Subscribe Framework

Overview and Motivation

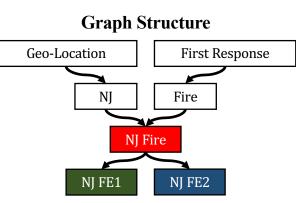
- Delivering the messages to the right people (i.e., first responders dealing with the particular incident, and/or volunteers nearby that can help)
- Objective and Intellectual Merit
 - An information layer for disaster management and clearly integrating social media information so we can automate the dynamic matching among victims, first responders and volunteers in a secure and timely manner

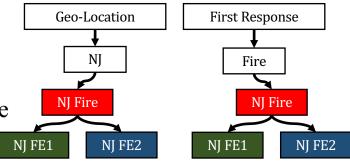
Research Challenge

- A graph-based naming framework, so that the relationships come automatically from the social media data generated in calls for help in a real disaster
 - An acyclic directed graph that has multiple roots

Namespace Design

• Multi-dimensional


- E.g. FireEngine1 has Time, Location and Department attributes (dimensions)
- Graph structure
 - More efficient than NDN-style strict hierarchy


• Dynamic

- Edges (relations) pop in and out of existence
- Publish/Subscribe service interface
 - Support a publish/subscribe capability for users to share information
 - Multiple entities can publish to a name
 - Uses a shared multicast structure in network, using rendezvous points (RPs)

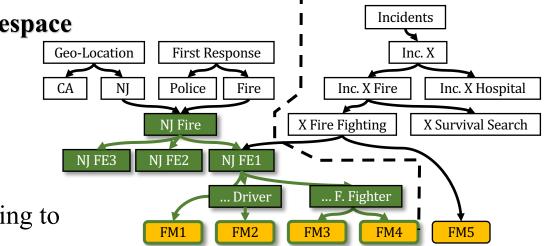
Hierarchical Structure

Hierarchical names:

/Geo-Location/NJ/NJ Fire /First Response/Fire/NJ Fire /Geo-Location/NJ/NJ Fire/NJ FE1 /First Response/Fire/NJ Fire/ NJ FE1 /Geo-Location/NJ/NJ Fire/NJ FE2 /First Response/Fire/NJ Fire/ NJ FE2

11

Improve Efficiency of Disaster Management by Graph-based Namespace


- Example namespace
 - Organizational structure: need information flow to members
 - Graph enables multiple dimensions (geo-location & functionality)
 - Incident place holder
- First responders instantiate roles
- Instantiate a disaster management template: preplanned namespaces
- Dispatch units to deal with functions in an incident
- Send messages to a role, e.g., "NJ Fire"

Need: Support a graph-based namespace in the network

Dynamic Nature of Namespace

Dynamic installations of disaster namespaces

The namespace can evolve according to the situation

Supporting Graph-Pub/Sub in The Network

- Alternatives:
 - Perform BFS/DFS at each router
 - Benefit: fewer messages to be delivered
 - Issue: computation and storage cost at each router, infeasible, inefficient
 - Network only deals with flat names/ids (e.g., IP multicast, MF multicast & COPSS with flat names)
 - Subscribers subscribe to all names & publish to one
 - Subscribers subscribe to one & publish to all names

Solution: information layer to do the name expansion

Overview and Motivation

It is essential to introduce trust value in both the pub/sub forwarding framework (network layer) and the location-based forwarding framework (routing layer) to achieve completely trustful networking. Thus, the outcome of this task constitutes the basis of all the other tasks.

• Objective and Intellectual Merit

An objective of this task is to add "**ephemeral trust**" to untrusted parties such as victims and volunteers and establish a trust chain originating from a first-responder.

Research Challenges

Our research challenge is to ensure the ephemeral trust of messages/participants in disaster situations.

A key idea is to employ two types of information sources:

- Verify consistency of multiple-messages in social media communications from volunteers/victims, and
- A deterrence capability emphasized by their biometric information.

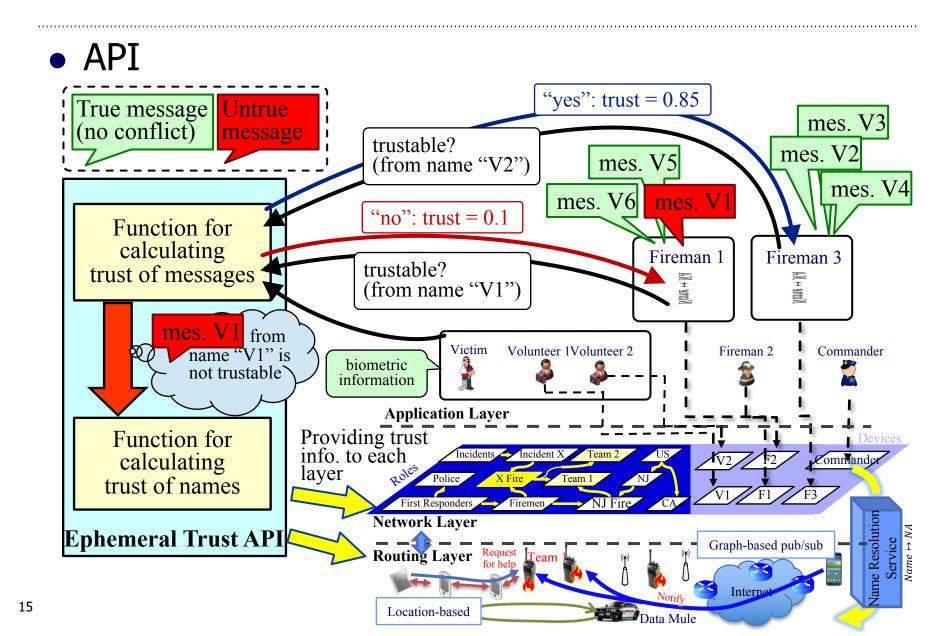
Solution

• (i1) Assignment of ephemeral trust:

Social media messages reported from volunteers/victims may have some degree of uncertainty. Some volunteers/victims may even send false messages or non-urgent messages deliberately. We develop a scheme to evaluate the veracity of messages in a disaster situation.

• (i2) Trust value management of ephemeral trust:

A possible way to formulate the veracity of messages is a game-theoretic approach. The trust value of a participant/message is formalized by a utility function, and the sender of true messages is assigned a trust value as a reward.

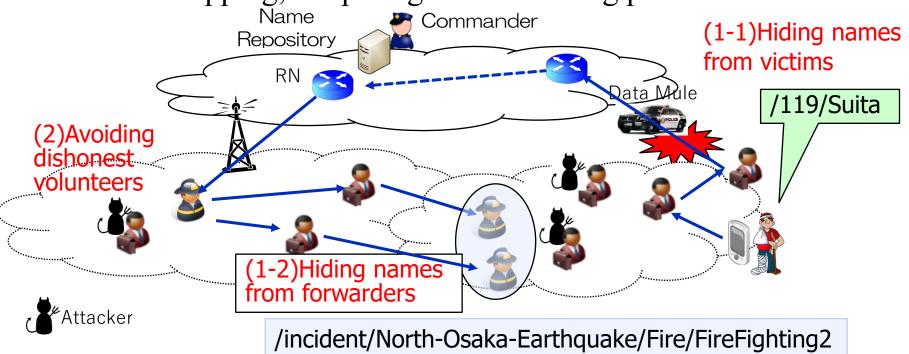

• (i3) Deterrence provided by biometrics:

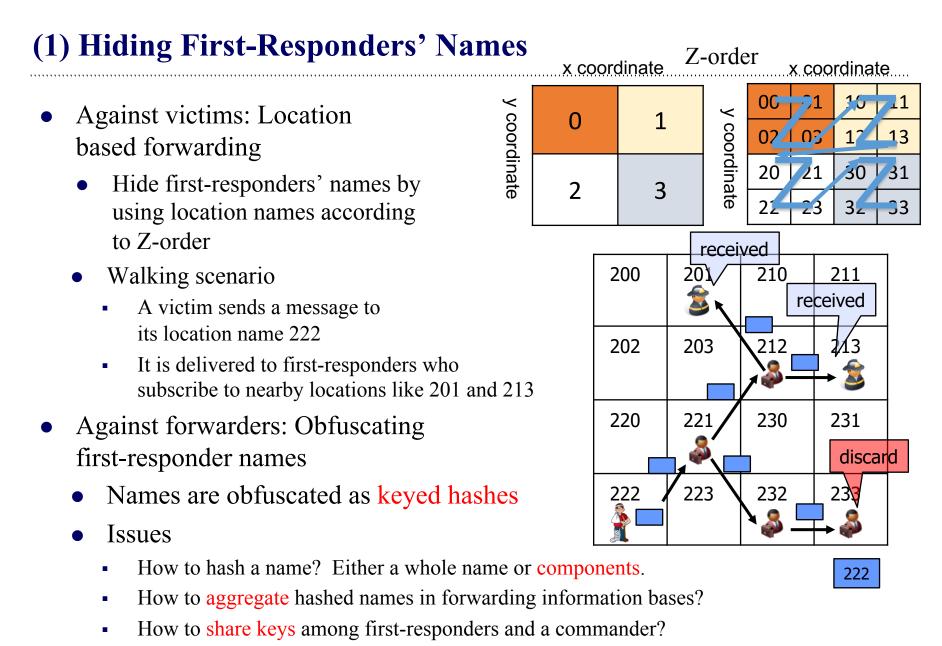
We introduce a concept of "**deterrence-based trust**" in our ephemeral trust model. By using biometric signature, even when participants are completely alone and isolated, they can leave evidence (biometric signature) linked to their actions.

• (i4) Development of trust API:

We develop a "**trust API**" which can be used not only for trustful/effective name resolution in pub/sub forwarding framework but also for trustful/effective route determiniation in location-based forwarding framework.

Trust Management - continued



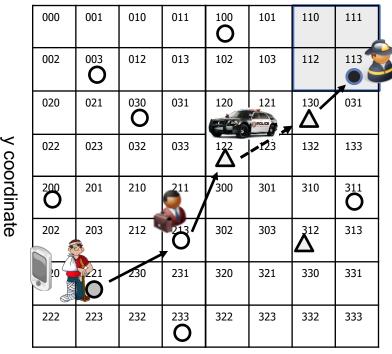

Secure Location Based Forwarding

- Overview and Motivation
 - Secure and resilient forwarding between honest first responders and between honest first responders and a volunteer/victim in multi-hop environments, assuming that
 - Security
 - No certificate authority is reachable from first responders
 - Some volunteers as forwarders may be dishonest
 - Reachability
 - Network is fragmented, thus the Internet backbone may not be available
- Objective and Intellectual Merit
 - Securely deliver urgent messages from a victim to one of the nearest first-responders when central emergency offices are not reachable

Secure Location Based Forwarding - continued

- Research Challenges
 - (1)Privacy: Hiding first responders' names from victims and volunteers
 - (2)Security: Resiliency against dishonest volunteers: eavesdropping, tampering and discarding packets

Location based Forwarding


- Distance vector routing protocol
 - Routing information: Aggregation based on Plaxton
- Preliminary evaluation
 - Packets are forwarded between randomly chosen nodes on a 64 x 64 mesh network
 - Some nodes forward more

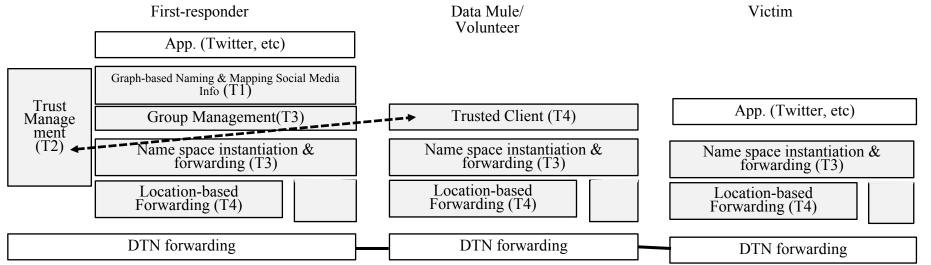
packets than the others

60 Node 50 40 30 20 10 0

O Source Node Destination Node Δ Data mule

O Forwarder

	0	1	2	3
1 st digit	030	122 via 213	-	312
2 nd digit	200	213	-	233


Forwarding table at 211

Resiliency against dishonest volunteers' behavior

- Approaches
 - Selecting volunteers with high trust values to avoid dishonest forwarders on forwarding paths
 - Reliably recording/sharing information (trust values and authentication information) of volunteers to prevent dishonest volunteers among volunteers by leveraging blockchain
 - Assuming that forwarding paths among them are not either secure or resilient to failures
- Research issues
 - Energy efficient byzantine fault tolerant algorithm rather than proof of work
 - Multi-hop environments where broadcasting is not available

Integration and Experiment

- Validation based on simulation and prototyping
 - Integrate graph-based namespace, pub/sub, forwarding and security functionality for design and performance evaluation
 - Integrate graph-based forwarding (T1 and T3) and locationbased forwarding (T4) on a prototype
 - Integrate trust management (T2) with above (T1, T3 & T4)

Conclusion

- Secure and resilient disaster communication in the Social Media era
 - Protocol design and evaluation based on analysis, simulation and prototype experiments over testbeds like Cutei and NDN testbed
- Dissemination
 - Open source software
 - Software on open source ICN software: Cefore, NFD(NDN Forwarding Daemon)
 - Example: An emergency message delivery service like 119/911 calls
 - Publications and Standardization
 - ACM ICN, IEEE Transactions, et. al.
 - IRTF ICNRG