

Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation

Walid Saad

Department of Electrical and Computer Engineering, Network sciEnce, Wireless, and Security (NEWS) Group Virginia Tech

Email: <u>walids@vt.edu</u> Group: <u>http://www.netsciwis.com</u>

Kei Sakaguchi

Tokyo Tech Academy for Super Smart Society Department of Electrical and Electronic Engineering School of Engineering **Tokyo Institute of Technology**

Email: <u>sakaguchi@mobile.ee.titech.ac.jp</u> Group: <u>https://sakaguchi-lab.net/</u>

Towards an Internet of Federated Digital Twins (IoFDT)

- Digital Twins for 6G vs Digital Twins over 6G
- Building an Internet of Federated Digital Twins
 - Brings in many fundamental questions across communications,
 - computing, and Al
- Synergies with emerging concepts (e.g., metaverse)

Towards a Decentralized Metaverse: Synchronized Orchestration of Digital Twins and Sub-Metaverses

Omar Hashash, Christina Chaccour, Walid Saad, Kei Sakagushi, and Tao Yu

Under review and available on: <u>https://arxiv.org/abs/2211.14343</u>

Introduction

- Digital twins (DTs) are key players in the metaverse
- Shifting DTs to the edge → demand for a decentralized edge-enabled metaverse
- Metaverse decomposed into submetaverses, i.e., digital replica of physical spaces, that are rendered at the edge
- **Challenge:** How can we harmonize the interoperability between **DTs and sub-**metaverses at the edge to enhance the *physical-digital duality* ?

Distributed Metaverse Framework

- Previous work tried to address synchronization in wireless edge networks, however they consider:

 - ➢ Metaverse synchronization only → fail to consider DT synchronization
 - Consider a centralized metaverse approach -> cannot accommodate the DTs residing at the edge
- Distributed metaverse
 → synchronization of both DTs and submetaverses at the edge
- <u>To bridge the gap</u>: investigating the joint synchronization of DTs and sub-metaverses in a distributed metaverse framework, while orchestrating the interplay between them at the edge

System Model

- Consider *K* DT applications
 operating in a 3D real-world zor
- PTs are replicated as CTs at *B* MEC servers
- The zone is scaled with a volumetric sensing density ρ(x, y, z) with a probability distribution g(x, y, z)
- The zone is partitioned into
 A regions, that are teleported to
 MEC servers as sub-metaverses

MEC server b

System Model (Cont'd)

Rate from

Total sensors Time to upload data generated within Δ from sensor q to MEC server b: connected to

Infinitesimal

volume

 $\underline{t_{q,b}^{\text{com}}(Q_b)} = \frac{\Delta \epsilon}{R_{q,b}(Q_b)} \overline{\rho(x, y, z)}$ sensor q to \lfloor MEC *b* $\blacktriangleright R_{q,b}(Q_b) = \frac{W_b^s}{Q_b} \log_2\left(1 + \frac{h_{q,b}\xi_q}{\sigma_c^2}\right)$ Time to render sensor q at MEC server b: $t_{q,b}^{\text{cmp}}(Q_b, \psi_b^s) = \frac{\Lambda \Delta \epsilon}{\psi_i^s} Q_b \rho(x, y, z)$ Metaverse Topological synchronization complexity resources

Total time to synchronize sensor q with its digital counterpart: •

$$t_{q,b}^{\text{sync}}(Q_b, \psi_b^s) = t_{q,b}^{\text{com}}(Q_b) + t_{q,b}^{\text{cmp}}(Q_b, \psi_b^s)$$

Sub-synchronization time to synchronize region a_h :

$$T_b(Q_b, \psi_b^s) = \iiint_{a_b} t_{q,b}^{\text{sync}}(Q_b, \psi_b^s) g(x, y, z) \, dx \, dy \, dz$$

Problem Formulation

• Our goal is to optimize the following problem:

- Solving this problem is challenging as:
 - It involves a set of mutually correlated regions
 - Region partitioning is dependent on the distribution of DTs and their synchronization intensities

Proposed Solution: Optimal Transport Theory

- Optimal transport (OT) can provide the optimal mapping, *from the sensors to the MEC servers*, which determines the region partitions that yield the minimal sub-synchronization time
- Under given resource allocations, our problem is reduced to a region partitioning problem:

$$\begin{split} \min_{a_{b,b\in\mathcal{B}}} & \frac{1}{B} \sum_{b\in\mathcal{B}} \iiint_{a_b} L(g(x,y,z)) F(\boldsymbol{\omega},\boldsymbol{\kappa}_{d}) \\ & \times g(x,y,z) \, dx \, dy \, dz, \\ \text{s.t.} & \bigcup_{b\in\mathcal{B}} a_b = \mathcal{Z}, \\ & a_i \cap a_j = \emptyset \quad \forall i,j\in\mathcal{A}, i\neq j. \end{split}$$

Proposed Solution (Cont'd)

• The *optimal regions partitioning* is given by the following map:

$$a_b^* = \left\{ \boldsymbol{\omega} = (x, y, z) | \alpha_b F(\boldsymbol{\omega}, \boldsymbol{\kappa}_b) \le \alpha_j F(\boldsymbol{\omega}, \boldsymbol{\kappa}_j), \forall j \neq b \in \mathcal{B} \right\}$$

- After determining the optimal regions, associate the DTs within each region a_b to MEC server b
- Provide the DTs connected to each MEC server with the sufficient computing resources to meet synchronization intensity requirements
- Assign the remaining resources for sub-metaverse synchronization
- Iterate this procedure until the average sub-synchronization time which allows satisfying all DTs synchronization requirements is reached

Our approach provides a tradeoff between DTs and sub-metaverses association to guarantee minimal sub-synchronization time

Next Steps

- Journal Paper: Continual Graph Neural Networks for an IoFDT over a Distributed Wireless Metaverse
 - Leverage CL as a tool to preserve the synchronized twinning process in a non-stationary scenario
 - Facilitate the continuous update process of DTs through Continual graph neural networks
- Conference Paper: Multi-view Generative AI for Ultra Predictive Digital Twins in the Metaverse
 - Develop a multi-view learning approach to predict future states of DTs connected through the IoFDT
 - This work is fundamental to hold experimental trials at Tokyo Tech on a vehicular DT application testbed

Overview of PoC Implementation of IoFDT

Ookayama B5G/6G Wireless & Computing Networks for Smart Mobility

Ookayama DT for Smart Mobility

Preliminary Demo Videos

Ookayama 3D Map & Simulator

Next Generation ITS for collision

Mobility DTs for Demo and Evaluation

Car-sharing system for automated cars

Collaborative Activities

- In-person meeting at IEEE VTC-Fall 2022 (kick off of project)
- We have been conducting monthly meetings
- Mr. Nonomura Kazuma visited Virginia Tech in January 2023
 - Discuss recent work: Reshape Car-Sharing System for Super Smart Society: A Digital Twin-Based Method and Implementation
 - This work will be a fundamental for our future work on the vehicular DT application testbed
- Joint publications (IEEE ICC, two ongoing magazines, one ongoing journal)
- Planned mutual visits in the next year or so to further foster collaborations

Communication Innovations

New communication approaches to today's wireless networks must take place:

- New network management techniques
- DT-oriented communication mechanisms
 - Cor

Computing Innovations

The convergence of computing and communications will require innovations at the computing level

- Edge-based designs
- Computing resource management
- Slashing computing latency

Conclusions

Creating the IoFDT requires reengineering data-driven approaches to:

- Knowledge-driven techniques that enable "growing" the IoFDT
- Lifelong Continual Learning that learn bit-by-bit

Experimental Innovations

Key experimental challenges must be addressed:

- Joint design and implementation of hardware, topology, and protocols
- Cross-system integration of different types of DTs
- PoC implementation of practical application/service for evaluation

