

Same as the slides used at the PI meeting 2019@Chicago

Resilience in Next-Generation Intelligent Optical Networks

Suresh Subramaniam, George Washington University Hiroshi Hasegawa, Nagoya University Masahiko Jinno, Kagawa University

1st Annual PI Meeting, Tokyo October 26, 2018

\checkmark Ge Same as the slides used at the PI meeting 2019@Chicago

✓ Proposed Research

- Survivable and Scalable OXC Node Architecture (Nagoya Univ.)
- Highly Survivable Protection Schemes for Trustworthy Optical Networks (Kagawa Univ.)
- Trustworthy Connection Resource Management (George Washington Univ.)

✓ Collaboration Plan & Time Table

Same as the slides used at the PI meeting 2019@Chicago

General Background & Project Goals

AGAWA

Extreme Same as the slides used at the PI meeting 2019@Chicago Broadband connection speed: x2 faster (2016-2021)

Cisco VNI (Visual Network Index)

- 127 times/16 years (2006-2021)
- 3.2 times (average), 4.6 times (peak) / 5 years (2016-2021)

In Japan

+29.7% /year (2017-2018)

Optical networks

- Only optical networks can carry the huge traffic. (10+Tbps/fiber, 1000fibers/cable)
- Offloading from wireless to fiber (ex. 5G, Radio over Fiber (RoF))
- Optical channel capacity: 10Gbps, 40Gbps, 100Gbps 📥 200Gbps, 400Gbps, 1Tbps...
- "Channel capacity enhancement < Traffic growth" : More fibers on each link

Failures

- Disasters: earthquakes, typhoons, tsunami...
- Random failures: # of failures will increase as components in a network will be more.
- Connection disruption has huge impact on our ICT based society.

Tools

- Recent advancement of machine learning.
- Specialized software and hardware (ex. Google's TPU).

Large scale optical nodes with many components

Emerging applications: 5G, UHDTV(up to 144Gbps)

Cloud based services

Scalability & CAPEX

revenue

Almost constant

ICT based society

Resiliency / Trustworthyness

Cost-effective, scalable, & parallel hardware MAGOYA

Redundancy in networks

Advanced transmission

Essentially difficult and complex problem

Resiliency

- Optical network design problem is **NP complete** even if we omit the resiliency requirement.
- Trade-offs between CAPEX reduction and resiliency level.

Node-level

• Revenue is defined in the upper layer and CAPEX (i.e. cost) in the lower layer.

Network-wide

link (fibers)

node

Optical networks/layers

- 1. De Same as the slides used at the PI meeting 2019@Chicago es.
- 2. Hybrid protection/restoration frameworks for the robustness against multiple node/link failures.
- 3. Fine-grained connection-level availability (as opposed to network-level survivability) management.

Survivable and Scalable OXC Node Architecture

Hiroshi Hasegawa (Nagoya University)

MEMS-based WSS

Spatially-jointed switching mode

- A WSS can be shared by # of cores.
- The WSS degree will be small. For example, a 1x20 WSS can be used as a 7-core 1x2 joint switching WSS.
- The WSS cascading will be inevitable which substantially increases the number of WSSs.

Conventional SDM node architectures

WSS cascading Wulti-core fiber A1 Joint switching Spatially-jointed switching node

Core-wise switching node [F. Moreno-Muro et.al. JOCN2017]

- # of WSSs/core ≥ 1
- Very good routing performance. Comparable to impractical WSSbased node with the full mesh inter-connection.
- # of WSSs/core $\geq 1/\#$ of cores/MCF
- Suffered from insufficient WSS degree. The number of WSSs will steeply increase by the WSS cascading.
- Relatively poor routing performance

There was no proposal that achieves "# of WSSs/core = 1/# of cores/MCF" and comparable routing performance to WSS-based node.

GAWA

THE GEORGE Spatially-jointed flexible waveband routing NAGOYA UNIVERSITY WASHINGTON, DC NOCE A GAWA

Spatially-jointed switching at WSSs

- Cost-effectiveness: "# of WSSs << # of cores"
- Scalability: Increasing the number of arrayed WSSs.
- Reliability: Minimized WSS numbers.

Spatially-jointed flexible wavebanding

- Wavebanding: Common to all cores.
- Routing wavebands: independent.
- # of wavebands in a core: small

This property enables the use of spatially-joint switching mode.

Transmission experiments

of paths/fiber # of ports of the cross-connect

Best student paper award@ONDM2020, Best paper award@ICP2020

How to parametrize the state of an optical network?

of frequency slots: 64, # of fibers/link: 1

of frequency slots = 352 (C-band), # of fibers on each link = 1

Topologies	# of nodes	# of links	Size of state vector
5x5 regular mesh	25	40	28160
USA (USNET)	24	43	30272
Pan-European (COST239)	19	37	26048
Japan (JPN25)	25	43	30272

The control of typical optical networks would be intractable.

UNIVERSITY WASHINGTON OF COPOSED Control Algorithm @ Fixed grid a g a w a WASHINGTON, DC OPOSED Control Algorithm @ Fixed grid a g a w a

<u>**Our strategy</u>** [R. Shiraki et.al. ICTON2019] Estimate the "value" of each wavelength layer independently and sum up all values.</u>

Topologies are identical. -

16

Frequency

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON DC TOPOSED CONTROL Algorithm @ Flexgrid K A G A W A UNIVERSITY

