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●UCLA 等の共同研究チーム、ナノスケールで光を制御する手法を開発 
 
【UCLA, 2015/02/02】 
 UCLA、コロンビア大などの共同研究チームはコンピュータチップ上でより正確

に情報伝送を可能にし、新たな光学材料にもつながる光制御手法の開発に成功した。 
 これは光の回折に対抗するためのランダム構造を持つ水晶の格子を使って約500
ナノメートルという光自身の波長よりも短い距離で光を制御するもので、レーザー

視準の新たな段階を開くことも期待される。 
 光は距離が伸びるほど回折度が高まるが、この回折を防いで、より高精度に光を

制御することは光通信で現在の物理的な限界を超える上でも重要。またバイオメデ

ィカル分野で使われる光ファイバの品質改善にもつながる。 
 研究チームは今回、ナノスケールで光を制御するために光結晶超格子を使用。超

格子に不規則に開いた光の波長よりも小さな様々な形の穴がこの中を通る光のガ

イド役になる。 
 この不規則性がもたらす効果はアンダーソン局在と呼ばれるが、2 日に Nature 
Physics 誌のオンライン版で発表された今回の研究はこの効果をチップサイズの光

結晶メディアで実験した初めてのものとなる。 
 この研究は主に米国海軍研究事務所からの資金を基に行われ、全米科学財団

(NSF)、エネルギー省、英国政府も補助的に支援。 
 また研究論文の主執筆者であるピンチュー・シー氏は台湾教育省の奨学金を受給

している。 
 
記事入手元： 
http://newsroom.ucla.edu/releases/team-led-by-ucla-and-columbia-engineers-us
es-disorder-to-control-light-on-a-nanoscale 
 
（参考）本件報道記事 
Team led by UCLA and Columbia engineers uses disorder to control light on a 
nanoscale 
 
Findings could lead to more precise information transfer in computer chips and 
other applications 

http://newsroom.ucla.edu/releases/team-led-by-ucla-and-columbia-engineers-uses-disorder-to-control-light-on-a-nanoscale
http://newsroom.ucla.edu/releases/team-led-by-ucla-and-columbia-engineers-uses-disorder-to-control-light-on-a-nanoscale
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Matthew Chin | February 02, 2015  
 
A breakthrough by a team of researchers from UCLA, Columbia University and 
other institutions could lead to the more precise transfer of information in 
computer chips, as well as new types of optical materials for light emission and 
lasers. 
 
The researchers were able to control light at tiny lengths around 500 
nanometers — smaller than the light’s own wavelength — by using random 
crystal lattice structures to counteract light diffraction. The discovery could 
begin a new phase in laser collimation — the science of keeping lasers precise 
and narrow instead of spreading out. 
 
The study’s principal investigator was Chee Wei Wong, associate professor of 
electrical engineering at the UCLA Henry Samueli School of Engineering and 
Applied Science. 
 
Think of shining a flashlight against a wall. As the light moves from the 
flashlight and approaches the wall, it spreads out, a phenomenon called 
diffraction. The farther away the light source is held from the wall, the more the 
beam diffracts before it reaches the wall. 
 
The same phenomenon also happens on a scale so small that distances are 
measured in nanometers — a unit equal to one-billionth of a meter. For example, 
light could be used to carry information in computer chips and optical fibers. 
But when diffraction occurs, the transfer of data isn’t as clean or precise as it 
could be. 
 
Technology that prevents diffraction and more precisely controls the light used 
to transfer data could therefore lead to advances in optical communications, 
which would enable optical signal processing to overcome physical limitations in 
current electronics and could enable engineers to create improved optical fibers 
for use in biomedicine. 
 
To control light on the nanoscale, the researchers used a photonic crystal 
superlattice, a lattice structure made of crystals that allows light through. The 



3 
 

lattice was a disorderly pattern, with thousands of nanoscale heptagonal, 
square and triangular holes. These holes, each smaller than the wavelength of 
the light traveling through the structure, serve as guideposts for a beam of 
light.   
 
Engineers had understood previously that uniformly patterned holes can 
control the spatial diffraction somewhat. But the researchers found in the new 
study that the structures with the most disorderly patterns were best able to 
trap and collimate the beam into a narrow path, and that the structure worked 
over a broad part of the infrared spectrum. 
 
The study’s lead author was Pin-Chun Hsieh, who was advised by Wong during 
his doctoral studies at Columbia University’s Fu Foundation School of 
Engineering and Applied Science. 
 
The effect of disorder, known as Anderson localization, was first proposed in 
1958 by Nobel laureate Philip Anderson. It is the physical phenomenon that 
explains the conductance of electrons and waves in condensed matter physics. 
 
The new study was the first to examine transverse Anderson localization in a 
chip-scale photonic crystal media. It was published online today by Nature 
Physics. 
 
“This study allows us to validate the theory of Anderson localization in 
chip-scale photonics, through engineered randomness in an otherwise periodic 
structure,” Wong said. “What Pin-Chun has observed provides a new path in 
controlling light propagation at the wavelength scale, that is, delivering 
structure arising out of randomness.” 
 
Hsieh, who also is chairman and majority owner of Taiwan-based 
Quantumstone Research, said the findings are completely counterintuitive 
because one might think that disorder in the structures would lead the light to 
spread out more. “This effect, based on intuition gained from electronic systems, 
where introduced impurities can turn an insulator into a semiconductor, shows 
unequivocally that controlling disorder can arrest transverse transport, and 
really reduce the spreading of light.” 
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The numerical simulation was performed at University College London, and the 
sample fabrication was carried out at the Brookhaven National Laboratory in 
New York and at National Cheng Kung University in Taiwan. 
 
The research was supported primarily by a grant from the U.S. Office of Naval 
Research. Additional support was provided by the National Science Foundation, 
the Department of Energy and the government of the United Kingdom. Hsieh is 
supported by a scholarship from Taiwan’s Department of Education. 
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