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Trends and Perspectives for Future Mobile :
Networks

0 Trends
® Exponential growth in data traffic

_ B Number of base stations / area
Big gap increasing for higher capacity

® Revenue growth constrained and
dependent on new services

Traffic

—t

Voice Revenue W Carriers under pressure to dramatically
a reduce TCO and energy bill
> Time ' .
0 Consequences Two Persp.ectlves.. |
B Energy use cannot follow traffic 1) Bandwidth Efficiency
growth without significant 2) Energy Efficiency

increase in energy consumption
- MUST REDUCE Energy Per Bit

® Number of base stations
increasing and hyper-dense networks are

- MUST REDUCE Operating ..
Power Per Cell to save TCO the keys to achieving both

FIU | §now @ VirginiaTech TQHOKU

UNIVERSITY UNIVERSITY

Self-organizing, heterogeneous,




Roadmap: Towards Energy Efficient HDHNS
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Key Research Challenges

0 Density, due to trillions of base
stations and connected devices

0 Network dynamics, due to
mobility

[0 Heterogeneity, at both base

RN UE
station and device levels, e.q.,
concurrent existence of — A
machine type devices (MTDs) RRHW

and users equipment's (UEs)
connections F

0 Inherent spectral-energy ' AR @
efficiency tradeoff and energy .
efficiency issue
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US-Japan Collaboration

/ Expertise:
v'Physical Layer design
v' Radio resource

management
v Fuzzy Logic and ANN
techniques
K . Expertise:
vLTE
- . v'USRP testbed
‘Expertise: ' v Mobility
v'Game Theory . = Management
v'Energy-efficient . Florida N
wireless designs International J
vEnergy-Harvesting - University
.. (FIU)

ANN: Artificial Neural Network
LTE: Long Term Evolution
USRP: Universal Software Radio
Peripheral
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NSF JUNO Research Thrusts

¢ I.A Handover Count
Based Mobility
State Estimation
.B Speed
ependent and
uzzy Logic Based
E Enhancement

Thrust I: Mobility
and Energy
Efficiency for

HDHNs

_

Energy
Efficiency

L
= 1
E —
o) )
= =
L

A Stochastic Geometry
Fhrust TT: Self for SON and EE
Organization foi Optlmlzatlon

HoHns e I1.B Large Population
mes for SON in HDHNs

Energy
Efficiency

III.A Data
ollection through

HRUST i ndroid Smart

TESTBED AND

Synergistic US-Japan Collaboration

e
s M 2 R 7 ot PR PERIMENTATION ilihones
s W5 e 22048 3&%5 FOR HDHNS I.B _
& 15 o &3 '51::,3'3 S el (BT 5 Xperimentation
c U U 5T -8R “ﬂ‘s S ith USRPs and
i S N 2 - c b :,‘.“v (1 *"15 s WARP Boards
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Project Timeline

Thrust | 8 Qua. Mobility and Energy Efficiency for HDHNs
Task LA 4Qua
Task I.B 6 Qua. Speed Depend. and Fuzzy Logic Based EE Enha.

Thrust Il  9Qua | Self Organization for HDHNs
Task 11.A 8 Qua. Stochastic Geometry for SON and EE Optimization
Task I1.B 6 Qua. ‘ Large Population Games for SON in HDHNs ‘
Thrust 111 8Qua. Testbed and Experimentation for HDHNs

Task I1l1.A 6 Qua. Data Collection through Android Smart Phones

Task I11.LB 9Qua. Experimentation with USRP/WARP Boards (REU Supplement at FIU, Aug. 2014 — July 2015)

ﬁ We are here
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Collaborative Efforts

0O Collaborative Research and Education
— Dr. Guvenc students took Game Theory course with Dr. Saad in Spring 2014
— MS students at TU working with the VT PI on game theory for sleep mode optimization
— Continuous exchange of data, results, and research ideas
0 Collaborative Tutorials and Talks
— IEEE VTC-Fall, Vancouver, Canada, Sep. 14, 2014 (Tutorial Accepted)
— IEEE MILCOM 2014, San Diego, CA, Oct. 2014 (under review)
— ICTF 2014, Poznan, Poland 28th May 2014 (Invited talk)
— IEICE RCS Workshop, Nagoya, Japan 18 April 2014 (JUNO Introduction)
— CITS 2014, Jeju Island, Korea, 9th July 2014 (Tutorial Accepted)
EUSIPCO 2014, Lisbon, Portugal, 1-5 Sep., 2014 (Tutorial Accepted)
O Collaborative Papers

— A. Merwaday, N. Rupasinghe, 1. Guvenc, W. Saad, M. Yuksel, “"USRP-Based Indoor
Channel Estimation for D2D and Multi-Hop Communications”, in Proc. IEEE Wireless and
Microwave Conf. (WAMICON), Tampa, FL, June 2014. [Thrust 111]

O Collaboratlve Workshops

IEEE HetSNets Workshop, Globecom 2014, Austin, TX (Co-chair: I. Guvenc, Keynote
speaker and panelist: F. Adachi)
— IEEE WDPC Workshop, WCNC 2014, Istanbul, Turkey (Co-chairs: 1. Guvenc and W. Saad)

— IEEE WDPC Workshop, WCNC 2015, New Orleans, LA (Co-chairs: I. Guvenc and W. Saad,
Publicity Chair: A. Mehbodniya) (in review)

| Project Website for all updates: https://sites.google.com/site/nsfjuno/ |
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Thrust-I: Mobility and Energy Efficiency »
for HDHNs

1 PBS per MBS

30 PBSs per MBS

e b I =
1w .'.. ¢ = 3 ® MBS nodes H
s, 1= -

-1.5

‘15 2 : :I v

Y-axis distance (Km)

* Interference and mobility challenges will be more and more severe
» Self organization/optimization is the key for good performance
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Mobility State Estimation
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0 Estimating the mobility states of user equipment (UE) is instrumental for

interference and mobility management

O Commonly handled through handover counts in existing standards

OO

stochastic geometry
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Fuzzy Logic for Vertical Handover (1)

12
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Fuzzy Logic for Vertical Handover (2)

Mehbodniya, A.; Kaleem, F.; Yen, K.K.; Adachi, F., "Wireless network access selection scheme for heterogeneous
multimedia traffic," Networks, IET , vol.2, no.4, pp.214,223, December 2013
O An intelligent, flexible, and scalable scheme to perform

— Handoff necessity estimation
— Handoff target network selection

0 A Fuzzy Logic Based Handoff Necessity Estimation scheme
O A Fuzzy TOPSIS MADM scheme to select the best target network
0 Network Types that are considered: WLAN, WMAN, WWAN
O Traffic Types that are considered: Conversational, Streaming, Background, Interactiv
" 1 T T e e e e e L e
S 5
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Thrust Il: Self-Organization for HDHNs

, og_
= = = L] \‘V

0 Traditional ways of network optimization using :,f’,'g

base station controlled processes, staff monitoring, g

maps, trial and error, .......... is difficult in HDHNS!

— Self-organization is now a necessity not o e
a privilege!
0 Popular buzzword © but... G
i » Still doing it manually?

— ..we view it as a distribution of intelligence |
throughout the network’s nodes, each

depending on its capability and features &S
— Simply: smarter devices and smarter network

[0 Most importantly, self-organizing resource management to
exploit the HDHNSs features with minimal overhead!

— How to enable self-organization? Game Theory!

FIU inow @VirginiaTech TOHOKU
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Game Theory: What? Why?

0 What is Game Theory?

— Has nothing to do with PS3 or
Medal of Honor ©

— Distributed optimization of
environments where multiplée s
players interact and make
coupled decisions

0 Heard of it before?
— In Movies
— Childhood games

— You have done at least one
game-theoretic decision in your
life without knowing!

0 For HDHNs . E Matchmg Penmes

— Noncooperative vs. cooperative

FIU o0 [VirginiaTech TOHOKU
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Game-Theoretic Framework for HDHNs

[0 Step 1: Basic noncooperative games as building blocks
— Players: base stations (if downlink) or devices (if uplink)
— Actions: sleep mode, resource allocation, mobility decisions, etc.

— Utilities: emphasis on tradeoffs between network performance and
energy-efficiency

[0 Step 2: Learning as a means to achieve equilibria or
desirable operating points

— Focus on learning with minimal information

— Preliminary work: IEEE ICC (June 2014) and IEEE ISWCS
(August 2014). Extension to IEEE Transactions ongoing.

[0 Step 3: Incorporate dynamics and build stochastic games
— Game meets stochastic geometry

[0 Step 4: The “trillions” dimension
— Large population games (e.g., mean-field and evolutionary games)
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To Sleep or Not To Sleep?

0 How to maintain energy
efficiency?
— Put BS to sleep?
— Wake BS up?

Nl ; — When to do what?
ge populatlon of small cells and device
(HDHN)

[0 Each BS faces a tradeoff between increasing its rate/reducing
load (in terms of fractional time needed to service users) and

the associated increase in the power consumption

0 We formulate a noncooperative game:
— Players: BSs both MBSs and SBSs.
— Strategies: State (sleep or active), power level, and cell bias
— Utilities: tradeoff between energy and load (fractional time)

FIU o @ VirginiaTech TOHOKU
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To Sleep or Not To Sleep?

Backhaul power

0 Power consumption includes: consumption
Total b — _ T Db — Y
Pb — Work (l S/l/ Jhﬁ) 1 K 7 dl
(fk Ufccd _|_ ]t Jbb — 1
T " Power of o terms are loss fractions in
ransmit power | | and baseband feeders, DC-DC conversion,
components etc.

0 We look at games in mixed strategies where players
choose an action probabilistically (a certain frequency)

[0 The goal is to find an equilibrium solution that can be
reached in a self-organizing manner

— Epsilon-equilibrium, where no BS can improve by
unilaterally changing its strategy (within ¢)
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To Sleep or Not To Sleep?

O Fully distributed learning algorithm based on the Boltzman-
Gibbs process reaches an equilibrium (IEEE ICC 2014)

— Update utility and actions jointly with no information

exchange
— Small overhead, only measurements of the current utility
90
-- : e Classical a )10'1«:11 1 SBSs —Q—Im‘ml load 20 users, a111\*110t 10 users
— { —E—P1'01505e(l al:leroach‘: 4 SBS-S =g Initial load: 80 users, departure of 10 users
E 2OFN e =& = Classical approach: 8 SBSs | 85 _ """"""""" """"""""" """"""""""
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Clustering and Sleep Mode Optimization

0 What if small cells can also cooperate and form clusters before
learning? (IEEE ISWCS, appeared June 2014)

— Location and load-aware clustering (graph theoretic)
— Clustering meets game theory and learning

— Extensions: stochastic geometry, dynamics, large population
12 . . J T T : 1 1 [ =

1 - — 08__ SRR AR )
e Llasmlca approach ) i) Increased low—uncrgy
—H8— Learning approach without clusters _ : consumed BSs
7] —©— Learning approach with clustering D o6t 4 Y . due to cooperation |
F o
1) A
2 6 [ o
et I '
2 | 0.4
o
4t - [
¢ 3 :
' 021 ¢ ' :
I Cooperation reduces > —— Classical approach
21 I the cost —H&— Learning approach without clusters
v I —9— Learning w1th spectral c]u@tt.rmg
. . ' 0
0 i i i ; ; i 10 15 20 25
10 20 30 40 50 60 70 BS energy consumption [W]

Number of users per base station
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SON Analysis through Stochastic Geometry 2

[0 Stochastic geometry: a

_ e popular tool to capture

fan S el statistics of the

725l interference in HDHNs

[0 Can analyze key network
metrics (outage,
capacity) in closed form
under some assumptions

= aleler R ol O We will use it to design
ol S5l and optimize interference
coordination for HDHN
deployments
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Interference Coordination with LTE 22
Release-11 (FelCIC)

FelCIC: Further-

P Frame Duration enhanced inter-cell
MBS - interference
Subframes | H\BHM\\HHM\\H\MHBHW\H\\L% 3 4 5 e 7 8 coor d | n at | on
< <>

Subframe Duration

Rel. 11: Reduced
power ABS

Reduced-power subframe
o: Power reduction factor

T: Range
expansion

10 2N 130 04 5 el

PBS-2 Subframes

Schedule PMS-B in coordinated Schedule PMS-A in

subframes 2, 6, 7 uncoordinated subframes
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HDHN Coverage with Rel-11 FelCIC 23
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FelCIC Optimization -- Preliminary Results

—26 T T T T 7
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Preliminary work: optimize ICIC for spectral efficiency (WCNC-2014)
Reasonable range of power reduction in blank subframes is between 0.1-0.4
Larger range expansion bias improves fairness, but hurts aggregate capacity
Future work: design and optimize FeICIC by jointly considering energy and
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How does Stochastic Geometry Analysis

25

Compare to Real Deployments?

51.58

Operator-1, MBS density = 1.53 MBSs/Km?
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0 Compared performance with stochastic geometry, hex. grid, and real BS locations

[0 Stochastic geometry (PPP) gives much closer 5t percentile results to real BS
deployments when compared with hex-grid

Considers Rel-11 FelCIC with the following parameters: t=6dB,a=0.5,=0.5,p=4dB, p’=12dB, and P,, = 46 dBm
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Thrust Ill — Testbed and Experimentation *
for HDHNs

Experimentation with USRPs,
WARP boards, CORENET testbed,

and software simulations

m To verify the feasibility of our proposed
RRM algorithms

® To emulate our massive deployment
scenarios

B To help students develop a practical
insight into their simulation works

® Optimizing the algorithms designed in
Thrusts I and II with conjunction to
physical layer parameters and designing

. _ experiments to verify them on our USRP

cid. 15503 =75 f-:f‘ '--'_ Measurement testbed
3 155825‘185505{;50';’ 501 5508 ~‘451;ra‘e°t°ry : B NSF REU Supplement awarded at FIU to

0
1'55085650f 15502 J

b iS50z T A support two undergraduate students
- between Aug. 2014 - July 2015

Data collection via Android

‘2_§023"' s : S Cid 15502 O cid. 15502
=Nahaden ) o e SRt R sma rtphones
e s e ' m To verify the developed algorithms for

mobility management through a massive
data collection campaign
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Collaboration Plan

N S [

Thrust I: Mobility and
Energy Efficiency for

HDHNSs

Thrust II: Self-Organization

for HDHNs

Thrust Ill: Testbed and

Experimentation for HDHNSs
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I.LA: Handover Count Based

Mobility State Estimation LEAD

1.B: Speed Dependent and Fuzzy V V V
Logic Based EE Enhancement LEAD

Il.A: Stochastic Geometry for SON and V V V
EE Optimization LEAD

I1.B: Large Population Games for SON V V
in HDHNs LEAD
l1l.A: Data Collection through Android V V V
Smart Phones LEAD

I11.B: Experimentation with USRPs and V V V
WARP Boards LEAD
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Conclusions

0 Project’s key outcome: new foundational science
for analyzing, optimizing, and building energy-
efficient 5G wireless systems

Investigating fundamentals of mobility in HDHNs and
developing analytical and simulation tools to estimate it

Designing self-organizing resource management
mechanisms using innovative techniques such as game
theory, i.e., large population games, etc, for HDHNSs.

Physical layer enhancement and its cross-layer
optimization with our proposed modules and algorithms.

Developing a multi-institutional, intercontinental
hardware/software testbed based on Android, WARP,
and USRP technologies and then, validating, evaluating, and
enhancing the proposed algorithms.

Creating a new, long-term US-Japan collaborative network
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