VOLUME 21

JOURNAL

OF THE

RADIO RESEARCH LABORATORIES

CONTENTS

Ι.	Analysis of the Maximum Observed Frequencies on Oblique Ionograms by Ray Tracing Technique	
	By I. Kuriki, I. Kasuya, H. Hojo, and K. Tanohata	161
Π.	Scattering Properties of Oblate Raindrops and Cross Polarization of Radio Waves Due to Rain (Part II)	
	-Calculation at Microwave and Millimeter Wave Region 	191
	SHORT NOTE	
ш.	Formant Frequency Shifts Under High Ambient Pressures 	261
IV.	Source Characteristics of Speech Produced Under High Ambient Pressures	
	By R. Tanaka, M. Nakatsui, and J. Suzuki	269
VI.	Notice	275

RADIO RESEARCH LABORATORIES MINISTRY OF POSTS AND TELECOMMUNICATIONS TOKYO, JAPAN

CORRECTION

Oguchi, T., and Hosoya, Y., Scattering properties of oblate raindrops and cross polarization of radio waves due to rain (Part II): Calculations at microwave and millimeter wave regions, J. Radio Res. Labs., 21, 105, 191–259, 1974:

We regret that the following errors occurred in the printing of the above paper:

1. Reference number, which was missing at the 9th line from the bottom of page 193, should be 8.

2. For $J_{v,h}(\mathbf{K}_1, \mathbf{K}_1)$ in the last line of page 193 read $f_{v,h}(\mathbf{K}_1, \mathbf{K}_1)$.

3. Subscripts v and h did not come out well in the first paragraph of section 3 (page 194). This paragraph should read:

3. Differential attenuation and differential phase shift in rain-filled space

Effective propagation constants, k_v and k_h , of rain-filled space for vertically and horizontally polarized incident waves respectively, are given by⁽¹⁴⁾

$$k_{v,h} = k_0 + (2\pi/k_0) \int f_{v,h}(\mathbf{K}_1, \mathbf{K}_1) n(R) dR$$

where n(R)dR is the drop-size distribution in space. This distribution is obtained from tables II and III of Medhurst's paper.⁽¹⁵⁾ Assuming the rain to fall uniformly through path length L, we obtain the attenuation, A_v and A_h , in dB and the phase shift, Φ_v and Φ_h , in degrees for vertically and horizontally polarized incident waves, respectively:

$$A_{v, h} = 8.686 \times Im(k_{v, h} \ L)$$

$$\Phi_{v, h} = (180/\pi) \times Re(k_{v, h} \ L)$$

4. For "an0" in the last line of the title of tables 1 to 10 in page 226 read "and".