2-2 電力計の較正 2-2-1 高周波電力計の校正1(1 mW, 50 Ω)

杉山 功 酒井孝次郎 瀬端好一 西山 巌 藤井勝巳

NICT では、同軸系コネクタセンサの場合には 100 kHz から 50 GHz まで、導波管センサの場合 には 170 GHz まで、取替同時比較法による高周波電力計の校正を行っている。校正の不確かさ(包 含係数 *k*=2)は、Type-N 50 Ω センサを用いる電力計の場合、周波数 100 MHz で 0.66 % である。 本報告では、100 kHz から 110 GHz までの高周波電力計(1 mW 以下)の校正手法、校正システ ム及び不確かさの算出方法について述べる。

1 まえがき

テレビやラジオの放送波、携帯電話、レーダーなど 様々な無線機器から出る電波は、それぞれ出力や変調 方式などが定められ、その出力の測定には主に高周波 電力計(以下、電力計)が用いられている。また、信 号発生器やスペクトラム・アナライザ等の測定器の校 正を行う際にも電力計を用いる。電力計は無線機器の 特性評価や各種測定器の校正をする際に使用する重要 な測定器であり、正確な測定を行うためには校正が必 要である。

NICT では、2016 年 11 月現在、周波数 100 kHz ~ 170 GHz までの電力計の校正を行っており、同軸系各 種コネクタを入力端子とするセンサ (Type-N 50 Ω、 3.5 mm、2.4 mm)の場合 (以下、同軸センサと略す。) には 100 kHz から 50 GHz まで、導波管を入力端子と するセンサ (V-Band (50 ~ 75 GHz)、W-Band (75 ~ 110 GHz)、D-Band (110 ~ 170 GHz))の場合 (以下、 導波管センサと略す。)には 170 GHz までの校正を 行っている。

本報告では、周波数100 kHzから110 GHzまでの 電力計(1 mW以下、同軸センサ及び導波管センサ)

図1 高周波電力計の基本構成

の校正手法、校正システム及び不確かさの算出方法に ついて述べる。

2 定義

一般的な電力計は指示部とセンサに分かれた構造を し、両者はケーブルで接続されている (図1)。センサ への入射電力 P_{in} と指示値 P_M とは式 (1)の関係が成り 立つ。

$$K = \frac{P_M}{P_{in}} \tag{1}$$

ここで、K を 校正係数 (Calibration Factor) といい、 このKの値を求めることを校正という。なお、一般 的な電力計には基準信号源 (50 MHz、1 mW) が内蔵 され、電力計使用時には事前にこの基準信号源にセン サを取り付けて1 mW の値をあわせる。したがって 校正係数には、この基準信号源の精度も含まれるため、 NICT では指示部とセンサを一体として校正を行って いる。

3 校正方法

3.1 取替同時比較法

電力計の校正方法には、比較法・同時比較法・取替 同時比較法などがある。取替同時比較法は信号源の反 射の影響を受けない、信号源の出力変動に強い等の利 点があり、NICTでは電力計(1 mW 以下、同軸セン サ及び導波管センサ)の校正手法として取替同時比較 法を用いている。

取替同時比較法の概念図を図2に示す。信号源から の信号はパワー・スプリッタのポート #1 に接続され、 パワー・スプリッタを通過した電力は、試験用ポート #2 と参照用ポート #3 に分配される。

図 2 取替同時比較法

- その後、次の手順で校正を行う。
- 1) 参照用ポート #3 に参照器 (REF) を接続する (校 正終了まで取り外さない)
- 2) 試験用ポート #2 に標準器 (STD) を接続する
- 試験用ポート #2のSTD 測定値が1 mW になる ようにポート #1 に接続された信号源を調整する
- そのときの STD 測定値 P_{MS} と REF 測定値 P_{RS} と の比R_S(= P_{MS}/P_{RS}) を求める
- 5) 試験用ポート #2 に接続された STD を被校正器 (DUT) に取り替える
- 6) 信号源を3) と同じ出力にする
- そのときの DUT 測定値 P_{MD} と REF 測定値 P_{RD} との比 R_D(= P_{MD}/P_{RD}) を求める
- 8) 4) と 7) から式 (2) により DUT の校正係数 K_D を 決定する。[1]

$$K_D = K_S \frac{R_D}{R_S} M \tag{2}$$

ただし、 K_s は上位校正機関による STD の校正係数であり、

$$R_{s} = \frac{P_{MS}}{P_{RS}} \tag{3}$$

$$R_D = \frac{T_{MD}}{P_{RD}} \tag{4}$$

である。ここで、不整合 M は等価信号源反射係数 Γ_{g2} 、 STD の反射係数 Γ_s 及び DUT の反射係数 Γ_p から次式 で表される。

$$M = \left| \frac{1 - \Gamma_{g2} \Gamma_D}{1 - \Gamma_{g2} \Gamma_S} \right|^2 \tag{5}$$

なお、*Γ*²はパワー·スプリッタの各Sパラメータから、

$$\Gamma_{g2} = S_{22} - S_{32} \frac{S_{21}}{S_{31}} \tag{6}$$

で求めることができる。

図3 校正システム

3.2 同軸センサを用いる電力計の校正

同軸センサの場合、電力1 mW、周波数100 kHz~ 50 GHz の電力計の校正が可能である[1]。校正システムの写真を図3に、ブロック図を図4に、それぞれ示 す。

本システムは、取替同時比較法を用いた校正システ ムで、信号発生器からの出力はスイッチを経由し、パ ワー・スプリッタ(ポート #1)へ入力され、パワー・ スプリッタで参照用ポート #3 及び試験用ポート #2 へ分離されている。なお、校正手順は取替同時比較法 で説明した手順となる。

この校正システムの特長のひとつは、各ポート面と センサのコネクタ面が均一に接するよう、校正システ

図 5 校正システム (W-Band)

図 6 校正システム (W-Band) ブロック図

ムの参照用ポート #3 及び試験用ポート #2 は上向き に設計されていることである。さらに、スイッチを切 り替えることにより、周波数範囲に対応したパワー・ スプリッタ及びセンサのコネクタに対応した出力ポー ト(試験用ポート及び参照用ポート)が選択でき、こ れにより周波数 100 kHz から 50 GHz で各種コネクタ (Type-N 50 Ω、3.5 mm、2.4 mm)の校正が可能となっ ている。なお、各コネクタの接続時には、再現性確保 のためトルクレンチを用いて、常に同じトルクでコネ クタを締め付けている。

3.3 導波管センサを用いる電力計の校正

 導波管センサの場合、V-Band は1 mW、W-Band は0.1 mW で電力計の校正が可能である[2]。校正シ ステムは V-Band 用と W-Band 用がそれぞれあるが、
 W-Band 用の写真を図5にブロック図を図6に示す。

本システムも取替同時比較法を校正手法としている。 ただし同軸センサの校正システムはパワー・スプリッ タを用いていたが、本システムではパワー・スプリッ タの代わりに方向性結合器(結合度:6 dB)を用いて

いる。信号発生器からの出力は逓倍器により、 V-Bandの場合には4逓倍、W-Bandの場合には6逓 倍され、方向性結合器(ポート #1)に入力される。方 向性結合器で信号をそれぞれ分離し、進行波方向には、 更にアイソレータが2個接続され、その出力端を試験 用ポート #2としている。また、方向性結合器の反射 波方向端を参照用ポート #3としている。

この校正システムの特長は、同軸センサ校正システ ムと同様に各ポートと導波管センサの導波管同士が均 ーに接するよう、校正システムの参照用ポート #3及 び試験用ポート #2 は上向きに設計されていることで ある。さらに、校正システムの導波管が細いため、揺 れ防止用に導波管センサを固定する治具を有している。

3.4 校正値

校正は上述した手順で行い、 P_{RS} 及び P_{RD} の測定は それぞれ100回行い、その平均値を求め、校正値の算 出には式(2)を用いる。なお、Mは1と見なして校正 係数を算出し、Mを1としたことによる影響は不確 かさとして評価している。

ただし、高い周波数では*M*が校正値に与える影響 が無視できなくなるため、式(5)で定義される*M*の 値を、 Γ_{g^2} 、 Γ_D 、 Γ_s (いずれも複素量)を用いて計算し、 その結果を式(2)に適用して補正し校正係数を算出す る。図7は同軸センサ校正システムで DUT (2.4 mm コネクタ、1 ~ 50 GHz)の校正を行った際の*M*の値 のグラフである。図のように、特に 30 GHz を超える と*M*が1から大きく外れ、*M*が校正値に与える影響 (図7では 50 GHz で約1%校正係数に影響を与える) が無視できないことがわかる。

4 トレーサビリティ

電力計の校正は、すべて国家標準である国立研究開 発法人産業技術総合研究所計量標準総合センター

周波数(GHz)	最高測定能力(%) (信頼の水準約95 %)
0.01	0.60
0.015	0.50
0.02	0.47
0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,	0.47
0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2	0.46
1.4, 1.5, 1.6, 1.8	0.45
2.0	0.46
2.5, 3.0, 4.0	0.45
5.0	0.47
6.0	0.46
7.0, 8.0	0.65
9.0	0.64
10	0.82
11	0.78
12	0.86
13	1.13
14	1.35
15	1.08
16	1.24
17	1.26
18	1.50

表 1 JCSS 認定範囲

(NMIJ)にトレーサビリティを確保している(特定二次標準器)。そのうち、電力計(1 mW、Type-N 50 Ω センサ)の周波数10 MHzから18 GHzにおいては ISO/IEC17025に基づくJCSS(国際MRA対応)で校 正が可能である[3]-[5]。JCSSとは、計量法に基づく 計量法トレーサビリティ制度であり、校正事業者を対 象とした登録制度で、独立行政法人製品評価技術基盤 機構認定センターが運営しており、計量法関係法規及 びISO/IEC17025の要求事項に適合しているかを登録 基準としている。

JCSS 認定の周波数及び最高測定能力を表1に示す。 なお、最高測定能力はDUT センサの反射 Γ_{D} を0と したときの不確かさで、DUT を校正したときの最も 小さい不確かさの値を表し、JCSS 登録時に登録証に 記載される。

5.1 同軸センサ

取替同時比較法の不確かさ伝播式は式(7)で表され

る [6]。なお、 $u(K_s)$ は STD の上位校正機関による校 正の不確かさであり、u(x)はxに対する標準不確かさ

$$u_{C}^{2}(K_{D}) = \left(\frac{R_{D}}{R_{S}}M\right)^{2}u^{2}(K_{S}) + \left(K_{S}\frac{M}{R_{S}}\right)^{2}u^{2}(R_{D}) + \left(-K_{S}\frac{R_{D}}{R_{S}^{2}}M\right)^{2}u^{2}(R_{S}) + \left(K_{S}\frac{R_{D}}{R_{S}}\right)^{2}u^{2}(M) + s^{2}(K_{D})$$
(7)

ただし、STDの校正係数 $K_s \approx 1$ であり、パワー・ス プリッタにより $R_s = P_{MS}/P_{RS} \approx 1$, $R_D = P_{MD}/P_{RD} \approx 1$ とな り、さらに、Mを1として校正係数を算出した(Mに よる補正を行わない)場合、式(7)の K_s 、 R_D 、 R_s 及び Mの推定量がすべて1であるため、各不確かさの要 因に対する感度係数は1または-1となり、自乗する と1となるため、相対標準不確かさは次式を用いて求 められる。

$$\frac{u(K_D)}{K_D} = \sqrt{\left(\frac{u(K_S)}{K_S}\right)^2 + \left(\frac{u(R_D)}{R_D}\right)^2 + \left(\frac{u(R_S)}{R_S}\right)^2 + \left(\frac{u(M)}{M}\right)^2 + \left(\frac{s(K_D)}{K_D}\right)^2} \quad (8)$$

Mによる補正を行わない場合の不確かさの要因は、 (1) STD の不確かさ、(2) STD の上位校正時と DUT 校正時の周囲温度の差異、(3) STD の経時変化、(4) DUT の表示桁数、(5) STD の表示桁数、(6) DUT と パワー・スプリッタ間及び STD とパワー・スプリッ タ間の不整合、(7) 測定のばらつきがある。

(1)はSTDの校正証明書に示された値(周波数によ り異なる)を用いる(正規分布)。(2)は校正証明書に示 された温度(23 ± 1 ℃)と校正時の周囲環境(23 ± 2℃)の差が校正値に与える影響を実測して求める(正 規分布)。(3)は1年間のSTDの上位校正値の変動か ら求める(正規分布)。(4)及び(5)は校正時のDUT及 び STD の読み取り桁 (小数第四位四捨五入) から決定 する (一様分布)。(6) は STD 及び DUT の反射係数と 試験用ポート #2の間の反射係数を実測して算出する (U分布)。(7)は校正をn回繰り返し行い、ばらつき を算出する。ただし、STDと試験用ポート#2の接合 面は一定とし、DUTと試験用ポート#2の接合面の 円周方向の位置をn分割 (Type-N 50 Ω コネクタのメ スの中心導体は、4または6に偶数分割されているた め [7]、n は 3 以上の奇数が望ましい) した測定を全周 分繰り返し(360 /n 度×n 回)行い、ばらつきを実測 する(正規分布)。

なお、一般にセンサは反射係数 Γ_{D} , Γ_{s} が十分小さく なるように設計されており、また、式(6)から、 Γ_{g2} も十分小さいことがわかっているので、

 $\left|\Gamma_{g2}\Gamma_{D}\right| << 1 \quad \text{fr}_{g2}\Gamma_{S} |<< 1 \tag{9}$

が成り立つ。したがって式(5)は、

不確かさの要因		不確かさ	分布	除数	標準不確かさ	感度係数	不確かさへの寄与	
					u(x)	c(x)	c(x) u(x)	
	上位校正	0.9962	0.40%	正規	2	0.0020	1	0.00199
K_{S}	温度変化	0.24%	0.24%	正規	1	0.0024	1	0.00237
	経時変化	0	0	正規	1	0	1	0.00000
R_D	DUT分解能	1.0072	0.001	一様	$\sqrt{3}$	0.0006	1	0.00058
R_{s}	STD分解能	1.0189	0.001	一様	$\sqrt{3}$	0.0006	-1	0.00058
М	不整合	1	0.0002	U	$\sqrt{2}$	0.0001	1	0.00011
$s(K_D)$	再現性	5回測定	0.0010	正規	$\sqrt{5}$	0.0004	1	0.00045
						標準不確かさ	0.00324	
					広張相	対不確かさ(k	0.00647	
					司波数	0.1 GHz, $K_D =$	0.66 %	

表 2 不確かさバジェットの例 (周波数 100 MHz) (補正なし)

$$M = \left| \frac{1 - \Gamma_{g2} \Gamma_D}{1 - \Gamma_{g2} \Gamma_S} \right|^2 \approx \left\{ l \pm 2 \left(\left| \Gamma_{g2} \Gamma_D \right| + \left| \Gamma_{g2} \Gamma_S \right| \right) \right\}$$
(10)

となる。よってM = 1の近似により生じる不確かさは 次式で表される。

$$u(M) = \frac{2}{\sqrt{2}} \sqrt{\left|\Gamma_{g2}\Gamma_{D}\right|^{2} + \left|\Gamma_{g2}\Gamma_{S}\right|^{2}}$$
(11)

以上の不確かさ要因から、*M*による補正を行わない場合の校正の不確かさバジェットの例(周波数100 MHz)を表2に示す。

また、Mによる補正を行う場合の不確かさは式(7) で得られる[8]。この場合、Mの不確かさには式(11) とは異なり、 Γ_{e2} 、 Γ_{5} 、 Γ_{p} 測定の不確かさが加味され、

$$u^{2}(M) = 4[\Gamma_{s} - \Gamma_{D}]^{2}u^{2}(|\Gamma_{g2}|)^{2} + 4|\Gamma_{g2}|^{2}\{u^{2}(|\Gamma_{s}|) - u(|\Gamma_{D}|)\}$$
(12)

となる。また、式(6)より、

$$u^{2}(|\Gamma_{g2}|) = u^{2}(S_{22}) + \left|\frac{S_{21}}{S_{31}}\right|^{2} u^{2}(S_{32}) + \left|\frac{S_{32}}{S_{31}}\right|^{2} u^{2}(S_{21}) + \left|-\frac{S_{32}S_{21}}{S_{31}^{2}}\right|^{2} u^{2}(S_{31})$$
(13)

となる。ここで、 $u(S_{xx})$ は、 S_{xx} を測定した際の標準 不確かさである。なお、不確かさの値はSパラメー タの測定に用いたベクトル・ネットワーク・アナライ ザ (VNA: Vector Network Analyzer) 製造会社供給 の計算式により算出した。

図7に示すように、特に30 GHz を超えると Mが1 から大きくはずれるため、NICT では、現在、同軸センサを用いる電力計の場合30 GHz 以上で Mによる 補正を行っており、Mを補正した場合の校正の不確 かさバジェットの例(周波数50 GHz、100 GHz)を 表3と表4に示す。

5.2 導波管センサ

導波管センサの場合も、同軸センサの場合と同様、 不確かさは、式(7)を用いて求められる。

また式(6)において

$$\left|S_{22}\right| >> \left|S_{32} \frac{S_{21}}{S_{31}}\right| \tag{14}$$

の場合には、

$$\Gamma_{g^2} \approx S_{22} \tag{15}$$

と近似できることに着目する。

図6に示すように、導波管センサ用の校正システム においては、逓倍器から出力された信号は、方向性結 合器に入力するが、方向性結合器の結合度は6dB(仕 様値)であるため、ポート #1と参照用ポート #3の間 のSパラメータ(S_{31})は約-6dBとなる。一方、ポー ト #1と試験用ポート #2の間には、アイソレータが 2個挿入されており、これらを通過する際の損失と、 方向性結合器を通過する際の損失とから、ポート #1 と試験用ポート #2の間のSパラメータ(S_{21})は、約 - 6dBとなる。

また、試験用ポート #2 と参照用ポート #3 の間の Sパラメータ(S_{32})について考えると、2 個のアイソレー タにより 40 dB のアイソレーションがあること、使 用した方向性結合器の方向性($-20\log|S_{31}/S_{21}|$)が

2 較正技術の研究開発

不確かさの要因		不確かさ	分布	除数	標準不確かさ	感度係数	不確かさへの寄与	
					u(x)	c(x)	c(x) u(x)	
	上位校正	0.868	3.1%	正規	2	0.0135	1.01	0.0136
K_{s}	温度変化	0.24%	0.24%	正規	1	0.0021	1.01	0.0021
	経時変化	0	0	正規	1	0	1.01	0.0000
R_D	DUT分解能	1.0580	0.001	一様	$\sqrt{3}$	0.0006	0.83	0.0005
R_s	STD分解能	1.0631	0.001	一様	$\sqrt{3}$	0.0006	-0.81	0.0005
М	不整合	1.0122	0.0037	U	$\sqrt{2}$	0.0026	0.86	0.0022
$s(K_D)$	再現性	5回測定	0.0010	正規	$\sqrt{5}$	0.0004	1.00	0.0004
						標準不確かさ	0.0139	
					広張相	対不確かさ(k	0.0278	
					周波数	(50 GHz, $K_D =$	3.2 %	

表3 不確かさバジェットの例(周波数50 GHz)(補正あり)

表 4	不確かさバジェッ	トの例(周波数100	GHz)
1			0112/

不確かさの要因		不確かさ	分布	除数	標準不確かさ	感度係数	不確かさへの寄与	
					u(x)	c(x)	c(x) u(x)	
	上位校正	0.918	3.6%	正規	2	0.0165	0.94	0.0155
K_{s}	温度変化	0.24%	0.24%	正規	1	0.0022	0.94	0.0020
	経時変化	0	0	正規	1	0	0.94	0.0000
R_D	DUT分解能	0.3493	0.001	一様	$\sqrt{3}$	0.0006	2.46	0.0014
R_{s}	STD分解能	0.3736	0.001	一様	$\sqrt{3}$	0.0006	-2.30	0.0013
М	不整合	1	0.0004	U	$\sqrt{2}$	0.0003	0.86	0.0003
$s(K_D)$	再現性	4回測定	0.0010	正規	2	0.0005	1.00	0.0005
						標準不確かさ	0.0157	
					広張相	対不確かさ(k	0.0314	
					刮波数	(100 GHz, $K_{\rm D}$ =	3.7 %	

20 dB 以上あることから、試験用ポート #2 の反射(S_{22}) に比べ S_{32} は約 60 dB 小さくなる。

したがって、図6に示す校正システムでは式(14) の関係が成り立つため、式(15)の近似式を用いるこ とができ、これにより、校正システムすべてのSパ ラメータを VNA で測定する必要がなく、試験用ポー ト #2の反射係数(S_{22})を測定(2-Port VNA で可能) するだけで Γ_{s2} を求めることができるようになる。

なお、不確かさの要因は、同軸センサの校正と同様

であるが、測定のばらつきについては、試験用ポート #2 と DUT の向き (導波管)を 180 度変えた測定を計 n 回 (n は偶数) 行い評価している。校正の不確かさバ ジェットの例 (周波数 100 GHz) を表4 に示す。

校正結果の妥当性及び校正システムのチェックのため、毎年同じ DUT の校正を行い校正結果の経年変化

図 8 同一 DUT 校正結果 (10 MHz ~ 18 GHz)

図 9 同一 DUT 校正結果 (75~ 110 GHz)

を評価している。

2011 ~ 2014 年の電力計の校正結果 (Type-N 50 Ω センサ、周波数 10 MHz ~ 18 GHz) を図 8 に、2012 年から 2016 年の校正結果 (W-Band) を図 9 に示す。 ただし、校正を行わなかった周波数については空欄と している。

経年変化は、 E_n 数[9]で評価することとした。 E_n 数は巡回試験等での評価に用いられ、次式で表される。

$$E_n = \frac{LAB - REF}{\sqrt{U_{LAB}^2 + U_{REF}^2}} \tag{16}$$

ただし、

- LAB:参加校正機関の測定値
- REF:参照校正機関の測定値
- ULAB:参加校正機関の拡張不確かさ(k=2)

U_{REF}:参照校正機関の拡張不確かさ(k=2)

であり、|E_n|≤1なら満足、|E_n|>1なら不満足の評価となる。
 式(16)の基準年(最終年)の校正値を REF(不確か さ U_{REF})、各年校正値を LAB(不確かさ U_{LAB})とし評価することとし、周波数毎に E_n数を求め過去4年間

の最大値を求めた。ただし、上位校正機関による STDの校正値は毎年若干異なるが、校正結果の評価 のみを行うため、基準年との比(最終年 STD 校正値/ 各年 STD 校正値)を各校正値に乗じて STD の変化分 を取り除いている。

評価の結果、Type-N 50 Ω センサ (周波数 10 MHz ~ 18 GHz)を用いる電力計では最大 E_n 数は 0.24、 2.4 mm センサ (周波数 1~ 50 GHz)は 0.15、V-Band センサは 0.31、W-Band センサは 0.11 であり、すべて 満足の評価となった。

以上のように、取替同時比較法を用いた本システム による過去4年間の校正結果は、評価範囲内の最大 *E*_n数は1未満であり、安定した校正結果が得られて いることがわかる。

7 あとがき

取替同時比較法を用い高精度で校正可能な、周波数 110 GHz までの電力計の校正手法、校正システム及び 不確かさの算出方法について述べた。さらに、本校正 システムによる電力計の校正は安定した結果が得られ ていることを示した。代表的な拡張不確かさ(包含係 数 k = 2)は、100 MHz, 0.66 %、50 GHz, 3.2 %、 100 GHz, 3.7 % であった。

なお、取替同時比較法を用いた電力計の校正手法は、 スペクトラム・アナライザの絶対値の校正にも応用が 可能であり、実際に校正に用いている。

【付録】 式 (2) の導出

図2に示す取替同時比較法の校正システムにおいて、 試験ポート #2 に標準器を接続した状態を、Sパラメー タを用いて表すと、次式が得られる。

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{23} & S_{33} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
(A.1)

$$a_1 = a_G + \Gamma_G b_1 \tag{A.2}$$

$$a_2 = \Gamma_s b_2 \tag{A.3}$$

$$a_3 = \Gamma_R b_3 \tag{A.4}$$

ただし、S行列はパワー・スプリッタを含む点線で示した3ポート回路の特性を表しており、 a_{G} は信号源の出射波、 Γ_{G} は信号源の反射係数、 Γ_{R} は参照器の反射係数、 Γ_{S} は標準器の反射係数である。これらの式から、標準器に入射する電力 P_{in}^{STD} 及び参照器に入射する電力 P_{in}^{RS} を求めると、それぞれ、

$$P_{\rm in}^{\rm STD} = \left| b_2 \right|^2 = \left| \frac{D_{(2S1)(11)}}{D} \right|^2 \left| a_G \right|^2 \tag{A.5}$$

$$P_{\rm in}^{\rm RS} = |b_3|^2 = \left|\frac{D_{(3S1)(11)}}{D}\right|^2 |a_G|^2 \tag{A.6}$$

ただし、

$$D = \det \begin{bmatrix} 1 - S_{11}\Gamma_G & -S_{12}\Gamma_S & -S_{13}\Gamma_R \\ -S_{21}\Gamma_G & 1 - S_{22}\Gamma_S & -S_{23}\Gamma_R \\ -S_{31}\Gamma_G & -S_{32}\Gamma_S & 1 - S_{33}\Gamma_R \end{bmatrix}$$
(A.7)

$$D_{(2SI)(11)} = \det \begin{bmatrix} S_{21} & -S_{23}\Gamma_R \\ S_{31} & 1 - S_{33}\Gamma_R \end{bmatrix} = S_{21} \left\{ 1 - \left(S_{33} - S_{23}\frac{S_{31}}{S_{21}} \right) \Gamma_R \right\} \quad (A.8)$$

$$D_{(3S1)(11)} = \det \begin{bmatrix} 1 - S_{22}\Gamma_s & S_{21} \\ -S_{32}\Gamma_s & S_{31} \end{bmatrix} = S_{31} \left\{ 1 - \left(S_{22} - S_{32}\frac{S_{21}}{S_{31}} \right) \Gamma_s \right\}$$
(A.9)

である。ここで、det[A]は、行列Aの行列式を表す。

いま、2つの入射電力を同時に測定して比を求める と、式(A.5)、(A.6)より、

$$R_{s} = \frac{P_{MS}}{P_{RS}} = \frac{K_{s}}{K_{RS}} \frac{P_{in}^{STD}}{P_{in}^{RS}} = \frac{K_{s}}{K_{RS}} \left| \frac{D_{(251)(11)}}{D_{(351)(11)}} \right|^{2} = \frac{K_{s}}{K_{RS}} \frac{|S_{21}|}{|S_{31}|}^{2} \frac{1 - \left(S_{33} - S_{23}\frac{S_{31}}{S_{21}}\right)\Gamma_{R}}{1 - \left(S_{22} - S_{32}\frac{S_{21}}{S_{31}}\right)\Gamma_{S}} \right|^{2}$$
(A.10)

を得る。ここで、 $P_{in}^{STD} = P_{MS}/K_S$ 及び $P_{in}^{RS} = P_{RS}/K_R$ の関係を用いた。 K_S 及び K_R はそれぞれ、標準器及び参照器の校正係数である。

次に、試験用ポート #2 に、標準器の代わりに被校 正器を接続し、入射電力の比を測定すると、

$$R_{D} = \frac{P_{MD}}{P_{RD}} = \frac{K_{D}}{K_{R}} \frac{P_{\text{in}}^{\text{DUT}}}{P_{\text{in}}^{\text{RD}}} = \frac{K_{D}}{K_{R}} \left| \frac{S_{21}}{S_{31}} \right|^{2} \left| \frac{1 - \left(S_{33} - S_{23} \frac{S_{31}}{S_{21}} \right) \Gamma_{R}}{1 - \left(S_{22} - S_{32} \frac{S_{21}}{S_{31}} \right) \Gamma_{D}} \right|^{2}$$
(A.11)

が得られる。ここで、 Γ_D は被校正器の反射係数であり、 $P_D = P_{MD}/K_D$ 及び $P_{in}^{RD} = P_{RD}/K_R$ の関係を用いた。 K_D は被校正器の校正係数である。

いま、式(A.10)と式(A.11)の比を計算すると、

$$\frac{R_{s}}{R_{D}} = \frac{K_{s}}{K_{D}} \left| \frac{1 - \left(S_{22} - S_{32} \frac{S_{21}}{S_{31}}\right) \Gamma_{D}}{1 - \left(S_{22} - S_{32} \frac{S_{21}}{S_{31}}\right) \Gamma_{s}} \right|^{2}$$
(A.12)

となり、式変形すれば、以下のとおり、式 (2) が得ら れる。

$$K_{D} = K_{S} \frac{R_{D}}{R_{S}} \left| \frac{1 - \left(S_{22} - S_{32} \frac{S_{21}}{S_{31}}\right) \Gamma_{D}}{1 - \left(S_{22} - S_{32} \frac{S_{21}}{S_{31}}\right) \Gamma_{S}} \right|^{2}$$
(A.13)

式の導出過程において、パワー・スプリッタのS21、

 S_{31} 、参照器の校正係数 K_R 及び反射係数 Γ_R 、式 (A.7) で示した行列式Dは、すべて消去されるため、実際 に求める必要はない。

【参考文献】

- 1 藤井勝巳, 杉山功, 鈴木晃, 篠塚隆, 山中幸雄, "ミリ波電力計校正シス テムの開発," 信学技報, EMCJ2006-57, MW2006-113, pp.37-41, Oct. 2006.
- 2 藤井勝巳, 杉山功, 鈴木晃, 篠塚隆, 山中幸雄, "V/W バンド用電力計 校正システムの開発,"信学技報, EMCJ2007-2, pp.7–12, April 2007.
- 3 ISO/IEC 17025:2005, "General requirements for the competence of testing and calibration laboratories," 2005.
- 4 http://www.nite.go.jp/iajapan/aboutus/ippan/onestop.html
- 5 岩間美樹,藤井勝巳,増沢博司,小池国正,坂齊誠,鈴木晃,宮澤義幸, 山中幸雄,篠塚隆, "無線通信部門における ISO/IEC17025 校正法の開 発,"情報通信研究機構季報, vol.52, no.1, pp.35–47, 2006.
- 6 "不確かさの見積もりに関するガイド (パワーセンサ),"独立行政法人製 品評価技術基盤機構認定センター, JCG211S21-06, June 2010.
- 7 "マイクロ波ミリ波同軸コネクタ,"キーサイト・テクノロジー合同会社, Dec. 2014.
- 8 木下基,島岡一博,小宮山耕司, "高周波電力計の比較校正方法とその不 確かさの評価," 産総研計量標準報告, vol.6, no.3, pp.145–150, Sept. 2007.
- 9 "適合性評価-技能試験に対する一般要求事項 JISQ 17043:2011 (ISO/ IEC 17043:2010) Conformity assessment-General requirements for proficiency testing,"

杉山 功 (すぎやま つとむ) 電磁波研究所

電磁環境研究室 主任研究員 無線用測定器の較正

酒井孝次郎 (さかい こうじろう)

電磁波研究所 電磁環境研究室 有期研究技術員 無線用測定器の較正

瀬端好— (せばた こういち) 電磁波研究所

電磁環境研究室 主任研究員 無線用測定器の較正、測地学

西山 巌 (にしやま いわお) 電磁波研究所 電磁環境研究室 無線用測定器の較正

藤井勝巳 (ふじい かつみ)
 電磁波研究所
 電磁環境研究室
 研究マネージャー
 博士(工学)
 無線用測定器の較正、環境電磁工学