HTML5 Webook
28/102

【参考文献【1内藤栄一, 守田知代, “ヒトの身体図式の脳内表現と身体的自己意識,” BRAIN and NERVE, vol.66, no.4, pp.367–380, 2014.2K. Amemiya, and E. Naito, “Importance of human right inferior frontopa-rietal network connected by inferior branch of superior longitudinal fas-ciculus tract in corporeal awareness of kinesthetic illusory movement,” Cortex, vol.78, pp.15–30, May 2016.3E. Naito, T. Morita, and K. Amemiya, “Body representations in the hu-man brain revealed by kinesthetic illusions and their essential contribu-tions to motor control and corporeal awareness,” Neuroscience Research, vol.104, pp.16–30, March 2016.4N. Mizuguchi, S. Uehara, S. Hirose, S. Yamamoto, and E. Naito, “Neuronal substrates underlying performance variability in well-trained skillful motor task in humans,” Neural Plasticity, vol.2016, Article ID 1245259, June 12. 2016, DOI:10.1155/2016/1245259.5内藤栄一, “運動制御と身体認知を支える脳内身体表現の神経基盤,” 理学療法学, vol.43, no.3, pp.59–62, 2016.6内藤栄一, 雨宮薫, 守田知代, “頭頂連合野と身体情報,” BRAIN and NERVE, vol.68, no.11, pp.1313–1320, 2016.7内藤栄一, 雨宮薫, 守田知代, “固有感覚,” Clinical Neuroscience誌, vol.35, no.2, pp.140–144, 2017.8守田知代, 内藤栄一, “Neuroimagingから見た発達研究,” 児童心理学の進歩, vol.55, pp.274–298, 2016.9T. Morita, M. Asada, and E. Naito, “Contribution of neuroimaging studies to understanding development of human cognitive brain functions,” Frontiers in Human Neuroscience, vol.10, Article 464, Sept. 15. 2016, doi:10.3389/fnhum.2016.00464.10T. Morita, D. N. Saito, M. Ban, K. Shimada, Y. Okamoto, H. Kosaka, H. Okazawa, M. Asada, and E. Naito, “Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network,” Neuroscience, Vol.348, pp.288–301, April. 21. 2017.11E. Naito, T. Morita, D. N. Saito, M. Ban, K. Shimada, Y. Okamoto, H. Kosaka, H. Okazawa, and M. Asada, “Development of right-hemi-spheric dominance of inferior parietal lobule in proprioceptive illusion task,” Cerebral Cortex, vol.27, no.11, pp.5385–5397, Aug. 31. 2017.12T. Morita, D. N. Saito, M. Ban, K. Shimada, Y. Okamoto, H. Kosaka, H. Okazawa, M. Asada, and E. Naito, “Self-face recognition begins to share active region in right inferior parietal lobule with proprioceptive illusion during adolescence,” Cerebral Cortex, vol.28, no.4, pp.1532–1548, Feb. 6. 2018.13E. Naito and S. Hirose, “Efficient foot motor control by Neymar’s brain,” Frontiers in Human Neuroscience, vol.8, Article 594, Aug. 1. 2014, doi: 10.3389/fnhum.2014.00594.14D. E. Callan and E. Naito, “Neural processes distinguishing elite from expert and novice athletes,” Cognitive and Behavioral Neurology, vol.27, no.4, pp.183–188, Dec. 2014.15内藤栄一, 南部功夫, 廣瀬智士, “イメージトレーニングによる運動学習と脳内機構,” 体育の科学, vol.66, no.1, pp.11–18, 2016.16内藤栄一, “超一流サッカー選手の脳活動の特殊性,” 計測と制御, vol.56, no.8, pp.588–594, 2017.17H. H. Kornhuber and L. Deecke, “Brain potential changes in voluntary and passive movements in humans: readiness potential and reafferent potentials,” Pflügers Archiv-European Journal of Physiology, vol.468, no.7, pp.1115–1124, July 2016.18Y. Kamitani and F. Tong, “Decoding the visual and subjective contents of the human brain,” Nature Neuroscience, vol.8, no.5, pp.679–685, May 2005.19F. Pereira, T. Mitchell, and M. Botvinick, “Machine learning classifiers and fMRI: a tutorial overview,” Neuroimage, vol.45, no.1, pp.S199–S209, Nov. 21. 2009.20J. P. Gallivan, D. A. McLean, K. F. Valyear, C. E. Pettypiece, and J. C. Culham, “Decoding action intentions from preparatory brain activity in human parieto-frontal networks,” Journal of Neuroscience, vol.31, no.25, pp.9599–9610, June 29. 2011.21J. P. Gallivan, D. A. McLean, J. R. Flanagan, and J. C. Culham, “Where one hand meets the other: limb-specific and action-dependent move-ment plans decoded from preparatory signals in single human fronto-parietal brain areas,” Journal of Neuroscience, vol.33, no.5, pp.1991–2008, Jan. 30. 2013.22G. Ariani, M. F. Wurm, and A. Lingnau, “Decoding internally and exter-nally driven movement plans,” Journal of Neuroscience, vol.35, no.42, pp.14160–14171, Oct. 21. 2015.23S. Hirose, I. Nambu, and E. Naito, “Cortical activation associated with motor preparation can be used to predict the freely chosen effector of an upcoming movement and reflects response time: An fMRI decoding study,” bioRxiv, 2018, DOI:10.1101/295345.24S. Hirose, I. Nambu, and E. Naito, “An empirical solution for over-prun-ing with a novel ensemble-learning method for fMRI decoding,” Journal of Neuroscience Methods, vol.239, pp.238–245, Jan. 15. 2015.25I. Nambu, N. Hagura, S. Hirose, Y. Wada, M. Kawato, and E. Naito, “Decoding sequential finger movements from preparatory activity in higher-order motor regions: an fMRI multi-voxel pattern analysis,” European Journal of Neuroscience, vol.42, no.10, pp.2851–2859, Sept. 5. 2015.26S. J. Blakemore and C. Frith, “The role of motor contagion in the pre-diction of action,” Neuropsychologia, vol.43, no.2, pp.260–267, Jan. 7. 2005.27T. Ikegami, G. Ganesh, T. Takeuchi, and H. Nakamoto, “Prediction error induced motor contagions in human behaviors,” eLife, vol.7, e33392, 2018, doi: 10.7554/eLife.33392 28G. Ganesh and T. Ikegami, “Beyond Watching: Action understanding by humans and implications for motor planning by interacting robots,” in Dance Notations and Robot Motion, Springer International Publishing, pp.139–167, 201629T. Ikegami and G. Ganesh, “Watching novice action degrades expert motor performance: Causation between action production and outcome prediction of observed actions by humans,” Scientific reports, vol.4, 6989, Nov. 11. 2014, doi: 10.1038/srep06989.30T. Ikegami and G. Ganesh, “Shared Mechanisms in the estimation of self-generated actions and the prediction of other's actions by humans,” eNeuro vol.4, no.6, Jan. 13. 2017, doi:10.1523/ENEURO.0341-17.2017.31池上剛, “運動システムを介した他者動作の予測,” 計測と制御, vol.56, no.8, pp.573–579, 2017.32C. Heyes, “Automatic imitation,” Psychological Bulletin, vol.137, no.3, pp.463–483, May 2011.33R. Gray and S. L. Beilock, “Hitting is contagious: experience and action induction,” Journal of experimental psychology Applied, vol.17, no.1, pp.49–59, March 2011.34T. L. Chartrand and J. A. Bargh, “The chameleon effect: the perception-behavior link and social interaction,” Journal of Personality and Social Psychology, vol.76, no.6, pp.893–910, June 1999.35M. Jeannerod, “Neural simulation of action: a unifying mechanism for motor cognition,” Neuroimage, vol.14, no.1, pp.S103–109, July 2001.36R. D. Crowninshield and R. A. Brand, “A physiologically based criterion of muscle force prediction in locomotion,” Journal of Biomechanics, vol.14, no.11, pp.793–801, 1981.37S. E. Engelbrecht, “Minimum principles in motor control,” Journal of Mathematical Psychology, vol.45, no.3, pp.497–542, June 2001.38A. d'Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle synergies in the construction of a natural motor behavior,” Nature Neuroscience, vol.6, no.3, pp.300–308, March 2003.39I. Kurtzer, J. A. Pruszynski, T. M. Herter, and S. H. Scott, “Primate up-per limb muscles exhibit activity patterns that differ from their anatomi-cal action during a postural task,” Journal of Neurophysiology, vol.95, no.1, pp.493–504, Jan. 2006.40D. Nozaki, K. Nakazawa, and M. Akai, “Muscle activity determined by cosine tuning with a nontrivial preferred direction during isometric force exertion by lower limb,” Journal of Neurophysiology, vol.93, no.5, pp.2614–2624, May 2005.41M. Hirashima and D. Nozaki, “Learning with Slight Forgetting Optimizes Sensorimotor Transformation in Redundant Motor Systems,” PLoS Computational Biology, vol.8, no.6, e1002590, June 28. 2012, doi: 10.1371/journal.pcbi.1002590.42M. Hirashima and T. Oya, “How does the brain solve muscle redun-dancy? Filling the gap between optimization and muscle synergy hy-potheses,” Neuroscience Research, vol.104, pp.80–87, March 2016.43日本特許, 国立研究開発法人情報通信研究機構, 運動解析装置および運動解析方法, 特開2017-037553.24   情報通信研究機構研究報告 Vol. 64 No. 1 (2018)3 ニューロフィードバック技術

元のページ  ../index.html#28

このブックを見る