HTML5 Webook
115/134

on the strength of B. ese eects have been implemented in the new AMATERASU functions. Comparisons with calculations done with the Atmospheric Radiative Transfer Simulator (ARTS) [15] are shown. e dierences between both models are less than 2% which is acceptable consider-ing that the atmosphere and the spectroscopic parameters were not xed. Further validations will be conducted in-cluding comparisons with the O2 lines measured at 488 GHz from the Odin satellite [15]. In this section, we illustrate how to use both versions of AMATERASU with simple examples. We do not discuss the algorithms behind the functions since they are de-scribed in the references given in the previous section.3.1SpectroscopyAMATERASU provides tools to handle standard spec-troscopic databases (e.g., [16]) and to convert them into its own formats. For version V1, the parameters of a spectro-scopic transition are stored in a string variable of 139 characters. e parameters describing a transition are FiF5Right panel: Zeeman lines of the O2 transition at 773.834 GHz (|B|= 0.6 Gauss) and polarization states of the lines with respect to the relative orientation of the LOS with the magnetic field. Right panel: O2 spectra simulated over the equator (left-side plots) and over the North pole (right-side plots) considering the Zeeman. Results are shown for radiometers with horizontal (H), vertical (V) and circular (C) polarizations. The full and dashed lines are calculations with AMATERASU-TF and ARTS, respectivelyTabT1 Spectroscopic parametersNotationDefinitionPositionSPEISOIsotopologue tag using HITRAN rules 1-2 (i2)FREFrequency of the transition [MHz]4-18 (f15.4)ERRFrequency error [MHz]19-26 (f8.4)FSHPressure induced frequency-shift at T0 [MHz/Torr]27-34 (f8.3)STGLog10 of the line strength at T0 [MHz.nm2]39-42 (f8.4)ELOEnergy of the lowest transition level [cm-1]43-52 (f10.4)AGA, SGAair- and self-collisional broadening param-eters [MHz/Torr] at T053-62 (f5.2)N, NSair and self broadening parameters tem-perature dependence [-]63-70 (f4.2)NFFrequency-shift temperature dependence parameter [-]73-76 (f4.2)T0Reference temperature [K]77-83 (f7.2)Q0,…,3Partition function coefficients (1)84-127 (f11.4)FSHSSelf frequency-shift parameter [MHz/Torr]128-135 (f8.3)NFSFrequency-shift parameter temperature dependence 136-139 (f4.2)(1)Q(T) = Q0 + Q1 (T-T0) + Q2 (T-T0)2 +Q3 (T-T0)3TabT2 Handling spectroscopic parameters with AMATERASU-V1. Comments are indicated with ‘#’.import numpy as np #Scientific PYTHON library (www.numpy.org) import amaterasu.common.spectro as AS #AMATERASU spectroscopic modulef_ghz = np.array([770, 780]) # Frequency range containing the O2 line at 773.84 GHz# Read the line parameters in the HITRAN catalogue (use wavenumber (cm^-1)).wavenum = AS.cm2mhz(f_ghz*1.e3, inv=1) #Wavenumber [cm^-1] (HITRAN unit)#Select lines for O2, O3, H2O, HDO, N2O, 13-CO, HO2 lines between 770-780 GHzh = AS.hitran().select(fre=wavenum, speiso=[71, 11,14,31,41,52,331]) outCabs_amalines = h.saveasama(None) # AMATERASU-V1 inputsprint(outCabs_amalines) #” 71 773839.7019…\n” #List of spectroscopic and molecular parameters. One element per isopologue (zip variable)hitranZip = h.getIso( size=20 ) #zip spectroscopy (ama format) and molecule dictionaries. diclines_o2 = [lines for lines,mol in hitranZip if mol[“name”] == “O2” ][0] print(hitranZip[0][0]) # {‘SPEISO’: array([11, 11]), ‘FRE’: array([775502.9805, 774855.9684]), …}print(hitranZip[0][1]) #{ ’name’: ‘H2O’, ‘iso’: 161, ‘riso’: 0.997317, ‘molarm’: 18.010565}1114-5 AMATERASU(テラヘルツ大気放射伝達モデル)の新機能 : SIWとSMILES-2ミッションのためのGPUによる多偏波放射伝達計算の高速化

元のページ  ../index.html#115

このブックを見る