HTML5 Webook
119/134

mances.-Sparse matrix functions are not implemented on the GPU for TF64 computations. -Automatic dierentiation cannot be used for com-puting the Jacobian matrix (it is designed for scalar output).ConclusionNew AMATERASU modules have been implemented for studying the new THz sounders for middle and upper atmospheric, namely SIW and SMILES-2. e new modules allow us to accelerate the calculations on GPUs, to derive the Zeeman spectra of the molecular and atomic oxygen lines, and to consider the polarization of the radiation. ey are implemented with TensorFlow and can be used together with AMATERASU-v1. e latter provides addi-tional functions for modeling the instrumental eects, computing the inverse problem or interfacing standard continua absorption models (Liebe for the millimeter wavelengths and MT-CKD for the THz/infrared regions). AMATERASU-TF will be improved in the future with more ecient algorithms (e.g., for Jacobian computations or polarized radiative transfer). TensorFlow is also regu-larly updated which should likely bring improvements. An automatic dierentiation method for computing the full Jacobian matrix would be very valuable. Migrating from TF to another framework is also investigated. Further stud-ies about SIW and SMILES-2 will aim for the denition of fast retrieval algorithms. Deep machine-learning techniques will be investigated, and the use of TF or similar tools in AMATERASU make such studies relatively easier. AcknowledgmentsSMILES-2 is led by Prof. Masato Shiotani (Kyoto University). In NICT, the project is led by Satoshi Ochiai (Remote Sensing Group) who is designing the instrument. SIW is led by the Chalmers Technical University (Sweden) team of Prof. Donal Murtagh. We like to thank Franz Schreier (DLR, Germany) for providing the Voigt functions that he implemented in the model GARLIC [14]. We are grateful to Donal Murtagh and Joakim Möller (Molow, Sweden) for their help. Many thanks for Richard Larsson (Max Planck institute, Germany) for providing the ARTS calculations. A special thought for Joachim Urban (Chalmers Technical University) who sadly passed away when we started these studies. ReferenceR1P. Baron, J. Mendrok, Y. Kasai, S. Ochiai, T. Seta, K. Sagi, K. Suzuki, H. Sagawa, and J. Urban, “AMATERASU: Advanced Model for Atmospheric TErahertz Radiation Analysis and Simulation,” Journal of the National Institute of Information and Communications Technology, 55 (1):pp.109-121, 2008.2T. Hobiger, D. Piester, and P. Baron, “A correction model of dispersive troposphere delays for the ACES microwave link,” Radio Science, 48(2):pp.131-142, 2013.3P. Baron, E. Dupuy, J. Urban, D. P. Murtagh, P. Eriksson, and Y. Kasai, “HO2 measurements in the stratosphere and the mesosphere from the Sub-Millimetre limb Sounder Odin/SMR,” International Journal of Remote Sensing, 30(15-16):pp.4195-4208, 2009.4P. Baron, J. Urban, H. Sagawa, J. Möller, D. P. Murtagh, J. Mendrok, E. Dupuy, T. O. Sato, S. Ochiai, K. Suzuki, T. Manabe, T. Nishibori, K. Kikuchi, R. Sato, M. Takayanagi, Y. Murayama, M. Shiotani, and Y. Kasai, “The level-2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES),” Atmospheric Measurement Techniques, 4(10):pp.2105-2124, 2011.5O. Nyström, D. Murtagh, and V. Belitsky, “PHOCUS radiometer,” Atmospheric Measurement Techniques, 5(6):pp.1359-1373, 2012.6S. Ishii, K. Mizutani, P. Baron, H. Iwai, R. Oda, T. Itabe, H. Fukuoka, T. Ishikawa, M. Koyama, T. Tanaka, I. Morino, O. Uchino, A. Sato, and K. Asai, “Partial CO2 column-averaged dry-air mixing ratio from measurements by coherent 2µm differential absorption and wind lidar with laser frequency offset locking,” J. Atmos. Oceanic Technol., 2012.7P. Baron, D. P. Murtagh, J. Urban, H. Sagawa, S. Ochiai, Y. Kasai, K. Kikuchi, F. Khosrawi, H. Körnich, S. Mizobuchi, K. Sagi, and M. Yasui, “Observation of horizontal winds in the middle-atmosphere between 30°S and 55°N during the northern winter 2009–2010,” Atmos. Chem. Phys., 13, pp.6049-6064, 2013.8P. Baron, D. Murtagh, P. Eriksson, J. Mendrok, S. Ochiai, K. Pérot, H. Sagawa, and M. Suzuki, “Simulation study for the stratospheric inferred winds (SIW) sub-millimeter limb sounder,” Atmospheric Measurement Techniques, 11(7):pp.4545-4566, 2018.9S. Ochiai, P. Baron, T. Nishibori, Y. Irimajiri, Y. Uzawa, T. Manabe, H. Maezawa, A. Mizuno, T. Nagahama, H. Sagawa, M. Suzuki, and M. Shiotani, “SMILES-2 mission for temperature, wind, and composition in the whole atmosphere,” SOLA, 13A:pp.13-18, 2017.10M. Shiotani, A. Saito, T. Sakazaki, S. Ochiai, P. Baron, T. Nishibori, M. Suzuki, T. Abe, H. Maezawa, S. Oyama, “A proposal for satellite observation of the whole atmosphere - Superconducting Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2),” International Geoscience and Remote Sensing Symposium (IGARSS), 2019.11S. Ochiai, “SMILES-2, a satellite observation plan of the whole atmosphere -- objectives and key technologies,” Journal of the National Institute of Information and Communications Technology, this issue, 2019.12J. Urban, P. Baron, N. Lautié, N. Schneider, K. Dassas, P. Ricaud, and J. de La Noë, “MOLIERE (v5): a versatile forward- and inversion model for the milli-meter and sub-millimeter wavelength range,” Journal of Quantitative Spectroscopy and Radiative Transfer, 83(3-4):pp.529-554, 2004.13P. Baron, S. Ochiai, E. Dupuy, R. Larsson, H. Liu, D. Murtagh, S. Oyama, H. Sagawa, A. Saito, T. Sakazaki, M. Shiotani, and M. Suzuki, “The measure-ment of MLT wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2),” to be submitted to Atmospheric Measurement Techniques, 2019.14F. Schreier, S. G. García, P. Hedelt, M. Hess, J. Mendrok, M. Vasquez, J. Xu, “GARLIC — A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation,” Journal of Quantitative Spectroscopy and Radiative Transfer, 137, pp.29-50, 2014.15R. Larsson, S. A. Buehler, P. Eriksson, J. Mendrok, “A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS),” Journal of Quantitative Spectroscopy and Radiative Transfer, 133, pp.445-453, 2014.16L.S. Rothman, I.E. Gordon, A. Barbe, et al., “The HITRAN-2008 molecular spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer, 110(910):pp.533-572, 2009.51154-5 AMATERASU(テラヘルツ大気放射伝達モデル)の新機能 : SIWとSMILES-2ミッションのためのGPUによる多偏波放射伝達計算の高速化

元のページ  ../index.html#119

このブックを見る