た計画全体のコストが高いことによる。NICTでは、SMILES-2の主要な機器である冷却受信機に関した開発を進めるとともに、電力収支を成立させコストを削減することを目的として、冷却受信機の設計、ミッションシステムの設計について検討を行っている。今年度それらの検討をまとめ、次のJAXA/ISASの公募に再び応募するSMILES-2の提案書に反映される予定である。謝辞SMILES-2は、京都大学の塩谷雅人教授をPIとするSMILES-2ワーキンググループにより検討が進められており、本稿の内容はワーキンググループによる検討結果を参考にしている。SMILES-2のシステム検討の一部はJAXAの宇宙理学委員会戦略的開発研究費により実施した。【参考文献【1A. Witze, “World's first wind-mapping satellite set to launch,” Nature, 560 (7719), pp.420–421, 2018.2C. R. Englert, et al., “Michelson Interferometer for Global High-Resolu-tion Thermospheric Imaging (MIGHTI): Instrument Design and Calibra-tion,” Space Science Review, 212 (1-2), pp.553–584, 2017.3Y. Kawatani, et al., “Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses,” Atmos. Chem. Phys., 16, pp.6681–6699, 2016.4M. P. Baldwin, et al., “The quasi-biennial oscillation,” Rev. Geophys., 39 (2), pp.179–229, 2001.5O. P. Tripathi, et al., “The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric fore-casts,” Q. J. R. Meteorol. Soc., 141, pp.987–1003, 2015.6J. McCormack, et al., “Comparison of mesospheric winds from a high-altitude meteorological analysis system and meteor radar observations during the boreal winters of 2009–2010 and 2012–2013,” J. Atmos. Solar-Terrestrial Phys., 154, pp.132–166, 2017.7Y. Miyoshi, et al., “Impacts of sudden stratospheric warming on gen-eral circulation of the thermosphere,” J. Geophys. Res. Space Phys., 120, pp.10897–10912, 2015.8D. Murtagh, et al., “An overview of the Odin atmospheric mission,” Can. J. Phys., 80 (4), pp.309–319, 2002.9M. J. Schwartz, et al., “Validation of the Aura Microwave Limb Sound-er temperature and geopotential height measurements,” J. Geophys. Res., 113, D15S11, 2008.10E. E. Remsberg, et al., “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res., 113, D17101, 2008.11K. Kikuchi and Y. Fujii, “Flight Model Performance of 640-GHz Super-conductor-Insulator-Superconductor Mixers for JEM/SMILES Mission,” J. Infrared Milli. Terahz. Waves, 31 (10), pp.1205–1211, 2010.12S. Ochiai, et al., “Receiver Performance of the Superconducting Sub-millimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station,” IEEE Trans. Geosci. Remote Sens., 51 (7), pp.3791–3802, 2013.13T. Sakazaki, et al., “Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station (ISS),” J. Geophys. Res. Atmos., 118, pp. 2991–3006, 2013.14D. L. Wu, et al., “Mesospheric doppler wind measurements from Aura Microwave Limb Sounder (MLS),” Advances in Space Res., 42 (7), pp. 1246–1252, 2008.15P. Baron, et al., “Observation of horizontal winds in the middle-atmo-sphere between 30S and 55N during the northern winter 2009-2010,” Atmos. Chem. Phys., 13 (13), pp.6049–6064, 2013.16P. Baron, et al., “Simulation study for the stratospheric inferred winds (SIW) sub-millimeter limb sounder,” Atmos. Meas. Tech., 11 (7), pp.4545–4566, 2018.17D. Murtagh, “Mm and sub-mm spectroscopy in atmospheric science,” Proc. Int. Symp. Space THz Tech., 2019, in preparation.18S. Ochiai, et al., “SMILES-2 mission for temperature, wind, and com-position in the whole atmosphere,” SOLA, 13A, pp.13–18, 2017.19P. Baron, “AMATERAS(テラヘルツ大気放射伝達モデル)の新機能 : SIWとSMILES-2ミッションのための GPUによる多偏波放射伝達計算の高速化,” 情報通信研究機構研究報告, 本特集号, 4–5, pp.107–116, 2019.20Y. Fujii, et al., “The First Six ALMA Band 10 Receivers,” IEEE Trans. THz Sci. Tech., 3 (1), pp.39–49, 2013.21入交, 川上, 落合, “テラヘルツ波高感度ヘテロダイン受信機の開発,” 情報通信研究機構研究報告, 本特集号, 4–4, pp.93–105, 2019.22楢崎, “日本の宇宙用小型冷凍機の開発について,” 低温工学, 53 (6), pp.355–362, 2018.23K. Narasaki, et al., “Lifetime Test and Heritage On-Orbit of SHI Coolers for Space Use,” Cryocoolers, 19, pp.613–622, 2016.24長谷川, 他, “SMILES-2 630/770 GHz SIS受信機のための統合導波管回路の開発,” 日本天文学会 2018年度春季年会, V117a, 2018.落合 啓 (おちあい さとし)電磁波研究所リモートセンシング研究室総括研究員博士(工学)マイクロ波リモートセンシング914-3 全大気圏衛星観測(SMILES-2)計画の目標と課題
元のページ ../index.html#95