ReferenceR1E. F. Arias, G. Panfilo, and G. Petit, “Timescales at the BIPM,” Metrologia 48, S145, 2011. https://doi.org/10.1088/0026-1394/48/4/S042T. P. Heavner, E. A. Donley, F. Levi, G. Costanzo, T. E. Parker, J. H. Shirley, N. Ashby, S. Barlow, and S. R. Jefferts, “First accuracy evaluation of NIST-F2,” Metrologia 51, p.174, 2014. https://doi.org/10.1088/0026-1394/51/3/1743F. Levi, D. Calonico, C. E. Calosso, A. Godone, S. Micalizio, and G. A. Costanzo, “Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain,” Metrologia 51, p.270, 2014. https://doi.org/10.1088/0026-1394/51/3/2704M. Abgrall, B. Chupin, L. De Sarlo, J. Guéna, P. Laurent, Y. Le Coq, R. Le Targat, J. Lodewyck, M. Lours, P. Rosenbusch, G. D. Rovera, and S. Bize, “Atomic fountains and optical clocks at SYRTE: status and perspectives,” C. R. Phys. 16, p.461, 2015. https://doi.org/10.1016/j.crhy.2015.03.0105K Szymaniec, S. N. Lea, K. Gibble, S. E. Park, K. Liu, and P. Głowacki, “NPL Cs fountain frequency standards and the quest for the ultimate accuracy,” J. Phys.: Conf. Ser. 723, 012003, 2016. https://doi.org/10.1088/1742-6596/723/1/0120036S. Weyers, V. Gerginov, M. Kazda, J. Rahm, B. Lipphardt, G. Dobrev, and K. Gibble, “Advances in the accuracy, stability, and reliability of the PTB pri-mary fountain clocks,” Metrologia 55, p.789, 2018. https://doi.org/10.1088/1681-7575/aae0087S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and C. Lisdat, “A strontium lattice clock with 3×10−17 inaccuracy and its frequency,” New J. Phys. 16, 073023, 2014. https://doi.org/10.1088/1367-2630/16/7/0730238J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. and Guéna, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, 1123, 2016. https://doi.org/10.1088/0026-1394/53/4/11239M. Pizzocaro, P. Thoumany, B. Rauf, F. Bregolin, G. Milani, C. Clivati, G. A. Costanzo, F. Levi, and D. Calonico, “Absolute frequency measurement of the 1S0-3P0 transition of 171Yb,” Metrologia 54, p.102, 2017. https://doi.org/10.1088/1681-7575/aa4e6210C. F. A. Baynham, R. M. Godun, J. M. Jones, S. A. King, P. B. R. Nisbet-Jones, F. Baynes, A. Rolland, P. E. G. Baird, K. Bongs, P. Gill, and H. S. Margolis, “Absolute frequency measurement of the 2S1/2-2F7/2 optical clock transition in 171Yb+ with an uncertainty of 4x10-16 using a frequency link to international atomic time,” J. Mod. Opt. 65, pp.585-591, 2018. https://doi.org/10.1080/09500340.2017.138451411W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schäffer, J. Savory, R. C. Brown, S. Römisch, C. W. Oates, T. E. Parker, T. M. Fortier, and A. D. Ludlow, “Towards adoption of an optical second: Verifying optical clocks at the SI Limit,” arXiv:1811.05885, 2018. https://arxiv.org/abs/1811.0588512S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below 10‑18,” Phys. Rev. Lett. 123, 033201, 2019. https://doi.org/10.1103/PhysRevLett.123.03320113C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for Lorentz symmetry testing,” Nature 567, pp.204-208, 2019. https://doi.org/10.1038/s41586-019-0972-214M. Kramer, I. H. Stairs, R. N. Manchester, M. A. McLaughlin, A. G. Lyne, R. D. Ferdman, M. Burgay, D. R. Lorimer, A. Possenti, N. D’Amico, J. M. Sarkissian, G. B. Hobbs, J. E. Reynolds, P. C. C. Freire, and F. Camilo, “Tests of General Relativity from timing the double pulsar,” Science 314, pp.97-102, 2006. https://doi.org/10.1126/science.113230515C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, and C. Lisdat, “Realization of a timescale with an accurate optical lattice clock,” Optica 3, 563-569, 2016. https://doi.org/10.1364/OPTICA.3.00056316H. Hachisu, F. Nakagawa, Y. Hanado, and T. Ido, “Months-long real-time generation of a time scale based on an optical clock,” Scientific Reports 8, 4243, 2018. https://doi.org/10.1038/s41598-018-22423-517J. Yao, J. A. Sherman, T. Fortier, H. Leopardi, T. Parker, W. McGrew, X. Zhang, D. Nicolodi, R. Fasano, S. Schäffer, K. Beloy, J. Savory, S. Romisch, C. Oates, Scott Diddams, Andrew Ludlow, and Judah Levine, “Optical-clock-based time scale,” arXiv:1902.06858, 2019. https://arxiv.org/abs/1902.0685818W. R. Milner, J. M. Robinson, C. J. Kennedy, T. Bothwell, D. Kedar, D. G. Matei, T. Legero, U. Sterr, F. Riehle, H. Leopardi, T. M. Fortier, J. A. Sherman, J. Levine, J. Yao, J. Ye, and E. Oelker, “Demonstration of a time scale based on a stable optical carrier,” arXiv:1907.03184, 2019. https://arxiv.org/abs/1907.0318419Y. Hanado, K. Imamura, N. Kotake, F. Nakagawa, Y. Shimizu, R. Tabuchi, Y. Takahashi, M. Hosokawa, and T. Morikawa, “The new generation system of Japan Standard Time at NICT,” Int. J. Navig. Obs. 2008, 841672, 2008. http://doi.org/10.1155/2008/84167220F. Nakagawa, M. Imae, Y. Hanado, and M. Aida, “Development of multichannel dual-mixer time difference system to generate UTC (NICT),” IEEE Trans. Instr. Meas. 54, p.829, 2005. https://doi.org/10.1109/TIM.2004.84338221G. Petit and Z. Jiang, “Precise Point Positioning for TAI computation,” Int. J. Navig. Obs. 2008, 841672, 2008. http://doi.org/10.1155/2008/56287822BIPM, “Circular T,” available at https://www.bipm.org/jsp/en/TimeFtp.jspTabeT2 Relation between power spectral density and Hadamard deviationNoise TypeAbbrev.() Hadamard ( )White phase noiseWPNℎ ℎ () Flicker phase noiseFPNℎ ( ) ℎ () White frequency noiseWFNℎ ℎ () Flicker frequency noiseFFNℎ () Random-walk freq. modulationRWFMℎ ℎ () Flicker-walk freq. modulationFWFMℎ ⋅3 () 994-4 光 – マイクロ波リンクとTAI校正
元のページ ../index.html#105