HTML5 Webook
95/258

uncertainty below 1 × 10–15 using International Atomic Time,” App. Phys. B 123, 34, 2017. https://doi.org/10.1007/s00340-016-6603-923D. W. Allan, “Time and frequency (time-domain) characterization, esti-mation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrasonic, Ferro. Freq. Control UFFC 34, 647, 1987.24N. Nemitz, H. Hachisu, F. Nakagawa, H. Itoh, T. Gotoh, and T. Ido,“光周波数標準のTAI校正への貢献,”情報通信研究機構研究報告,vol.65,no.2, 4–4, 2019.25R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny, R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, and J. Lodewyck, “Experimental real-ization of an optical second with strontium lattice clocks,” Nat. Commun. 4, 2109, 2013. https://doi.org/10.1038/ncomms310926D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F. -L. Hong, “Spectroscopy and frequency measure-ment of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7, 012401, 2014. https://doi.org/10.7567/APEX.7.01240127St. Falke, N. Lemke, C. Grebing, B. Kipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Hafner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10–17 inac-curacy and its frequency,” New J. Phys. 16, 073023, 2014. https://doi.org/10.1088/1367-2630/16/7/07302328Y. Lin, Q. Wang, Y. Li, F. Meng, B. Lin, E. Zang, Z. Sun, F. Fang, T. Li, and Z. Fang, “First evaluation and frequency measurement of the strontium optical lattice clock at NIM,” Chin. Phys. Lett. 32, 090601, 2015. https://doi.org/10.1088/0256-307X/32/9/09060129T. Tanabe, D. Akamatsu, T. Kobayashi, A. Takamizawa, S. Yanagimachi, T. Ikegami, T. Suzuyama, H. Inaba, S. Okubo, M. Yasuda, F. -L. Hong, A. Onae, and K. Hosaka, “Improved Frequency Measurement of the 1S0–3P0 Clock Transition in 87Sr Using a Cs Fountain Clock as a Transfer Oscillator,” J. Phys. Soc. Jpn. 84, 115002, 2015. https://doi.org/10.7566/JPSJ.84.11500230C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Wey-ers, B. Lipphardt, F. Riehle, U. Sterr, and Ch. Lisdat, “Realization of a timescale with an accurate optical lattice clock,” Optica 3, 563, 2016. https://doi.org/10.1364/OPTICA.3.00056331J. Lodewyck, S. Bilicki, E. Bookjans, J. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guena, M. Abgrall, P. Rosen-busch, and S. Bize, “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock,” Metrologia 53, pp.1123–1130, 2016. https://doi.org/10.1088/0026-1394/53/4/112332C. F. A. Baynham, R. M. Godun, J. M. Jones, S. A. King, P. B. R. Nisbet-Jones, F. Baynes, A. Rolland, P. E. G. Baird, K. Bongs, P. Gill, and H. S. Margolis, “Absolute frequency measurement of the 2S1/2 → 2F7/2 optical clock transition in 171Yb+ with an uncertainty of 4 × 10–16 using a frequency link to International Atomic Time,” Journal of Modern Optics 65, pp.585–591, 2018. https://doi.org/10.1080/09500340.2017.138451433W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schäffer, J. Savory, R. C. Brown, S. Römisch, C. W. Oates, T. E. Parker, T. M. Fortier, and A. D. Ludlow, “Towards Adoption of an Optical Second: Verifying Optical Clocks at the SI Limit,” arXiv:1811.05885, 2018.34蜂須英和,藤枝美穂,熊谷基弘,長野重夫,後藤忠広,松原健祐,李瑛,N. Nemitz,大坪望,早坂和弘,中川史丸,花土ゆう子,井戸哲也,“ストロンチウム光格子時計の周波数比較及び時系生成への応用,” 情報通信研究機構研究報告, vol.65, no.2, 4–5,2019.35H. Hachisu, F. Nakagawa, Y. Hanado, and T. Ido, “Months-long real-time generation of a time scale based on an optical clock,” Sci. Rep. 8, 4243, 2018. https://doi.org/10.1038/s41598-018-22423-536BIPM, “Recommended values of standard frequencies for applications including the practical realization of the metre and secondary repre-sentations of the definition of the second (2017),” available at http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html37M. Kumagai, H. Ito, M. Kajita, and M. Hosokawa, “Evaluation of cae-sium atomic fountain NICT-CsF1,” Metrologia 45, 139, 2003. https://doi.org/10.1088/1681–7575/aaa30238A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct Comparison of Distant Optical Lattice Clocks at the 10–16 Uncertainty,” Appl. Phys. Express 4, 082203, 2011. https://doi.org/10.1143/APEX.4.08220339P. Wcisło, P. Ablewski, K. Beloy, S. Bilicki, M. Bober, R. Brown, R. Fasano, R. Ciuryło, H. Hachisu, T. Ido, J. Lodewyck, A. Ludlow, W. McGrew, P. Morzyński, D. Nicolodi, M. Schioppo, M. Sekido, R. Le Targat, P. Wolf, X. Zhang, B. Zjawin, and M. Zawada, “New bounds on dark matter coupling from a global network of optical atomic clocks,” Sci. Adv. 4, eaau4869, 2018. https://doi.org/10.1126/sciadv.aau4869蜂須英和 (はちす ひでかず)電磁波研究所時空標準研究室主任研究員博士(工学)光周波数標準、光格子時計とその応用Nils Nemitz (にるす ねみっつ)電磁波研究所時空標準研究室主任研究員Dr. rer. nat.光周波数コム、光周波数標準、標準時李 瑛 (り いん)電磁波研究所時空標準研究室有期研究技術員博士(理学)光周波数標準、レーザー物理石島 博 (いしじま ひろし)電磁波研究所時空標準研究室有期研究技術員 井戸哲也 (いど てつや)電磁波研究所時空標準研究室室長博士(工学)光周波数標準、光周波数計測894-3 NICTにおけるストロンチウム光格子時計の開発

元のページ  ../index.html#95

このブックを見る