materials,” Nature, vol.466, no.7307, pp.735–738, 2010.16R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-di-electric layered metamaterials,” Phys. Rev. B, vol.87, no.11, 115139, 2013.17A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science, vol.339, issue 6125, 1232009, 2013.18N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol.334, pp.333–337, 2011.19S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-ef-ficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett., vol.12, pp.6223–6229, 2012.20W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun., vol.10, no.1, art. no.355, 2019.21F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science, vol.347, pp.1342–1345, 2015.22B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolith. MEMS MOEMS, vol.13, 023007, 2014.23B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions,” Nano Lett., vol.16, pp.5191–5196, 2016.24B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun., vol.51, pp.11470–11473, 2015.25H. Kurosawa and M. Iwanaga, “Optical-signal-enhancing metasurface platforms for fluorescent molecules at water-transparent near-infrared wavelengths,” RSC Adv., vol.7, pp.37076–37085, 2017.26N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plas-monic metasurfaces,” Nano Lett. vol.12, pp.6328–6333 2012.27S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett., vol.108, 251104, 2016.28Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Mi-yamaru, “Reconfigurable terahertz quarter-wave plate for helicity switch-ing based on Babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl., vol.11, 044008, 2019.29C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with meta-surfaces,” Phys. Rev. Appl., vol.2, 044012, 2014.30Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic Babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl., vol.6, 044022, 2016.31B. X. Wang, C. Y. Zhao, Y. H. Kan, and T. C. Huang, “Design of meta-surface polarizers based on two-dimensional cold atomic arrays,” Opt. Express, vol.25, pp.18760–18773, 2017.32M. Iwanaga, “Polarization-selective transmission in stacked two dimen-sional complementary plasmonic crystal slabs,” Appl. Phys. Lett., vol.96, 083106, 2010.33M. Babinet, “Mémoires d’optique métérologigue,” Compt. Rend. Acad. Sci., vol.4, pp.638, 1837.34M. Born, E.Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., Cambridge University, 1999..35M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express, vol.18, pp.15389–15398, 2010.36M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater., vol.13, 053002, 2012.37H. Kurosawa, B. Choi, Y. Sugimoto, and M. Iwanaga, “Highperformance metasurface polarizers with extinction ratios exceeding 12000,” Opt. Express, vol.25, pp.4446–4455, 2017.38H. Kurosawa, B. Choi, and M. Iwanaga, “Enhanced high performance of a metasurface polarizer through numerical analysis of the degrada-tion characteristics,” Nanosc. Res. Lett., vol.13, pp.225, 2018.39K. Asano, S. Yokoyama, A. Kemmochi, and T. Yatagai, “Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromi-um-oxide subwavelength grating,” Appl. Opt., vol.53, no.13, pp.2942–2948, 2014.40T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials push-ing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater., vol.4, no.11, pp.1780–1786, 2016.41C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science, vol.315, pp.47–49, 2007.42A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol.37, pp.5271–5283, 1998.43I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am., vol.55, pp.1205–1209, 1965.44W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: real-izing Fano-like interference and high-performance sensor,” Opt. Ex-press, vol.21, pp.10251–10258, 2013.45K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics, vol.8, pp.1379–1385, 2013.46R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode in-terferences and Fano resonances in metal-insulator-metal nanostruc-tured interface,” Sci. Rep., vol.5, 14419, 2015.47S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crys-tal slabs,” Phys. Rev. B, vol.66, no.4, 045102, 2002.48L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A, vol.13, no.5, pp.1024–1035, 1996.49L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A, vol.14, no.10, pp.2758–2767, 1997..50F. Gervais, “Aluminum oxide (Al2O3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. Academic, Burlington, 1997, pp.761–775.51H. Kurosawa and S. Inoue, J. Opt. Soc. Am. B, vol.37, no.3, pp.673–681, 2020.52H. Kurosawa and S. Inoue, Opt. Express, vol.28, no.8, pp.11652–11665, 2020.黒澤裕之 (くろさわ ひろゆき)2020年3月まで未来ICT研究所深紫外光ICTデバイス先端開発センター研究員(現在、京都工芸繊維大学電気電子工学系助教)博士(理学)ナノフォトニクス井上振一郎 (いのうえ しんいちろう)未来ICT研究所深紫外光ICTデバイス先端開発センターセンター長博士(工学)ナノ光エレクトロニクス102 情報通信研究機構研究報告 Vol.66 No.2 (2020)4 環境制御ICT基盤技術 —基盤から社会展開まで—
元のページ ../index.html#106