LSD = 0.75 µm)でfT = 237 GHz、fmax = 287 GHz(Vds = 3.0 V、Vgs = 0.4 V)を得るとともに、MIS若しくはMES構造のいずれにおいても基板材料による高周波特性には差がなく、ほぼ同等のfT及びfmaxを得られることが分かった。また、GaN基板上MIS型HEMT(Lg = 45 nm、Wg = 50 µm×2、LSD = 0.75 µm)の周波数70 GHzにおける出力特性についても測定し、約15mW(ゲート幅1 mmあたり0.32W)の出力電力を得た。高周波計測技術として、VNA及び周波数エクステンダ(最大測定可能周波数1100 GHz = 1.1 THz)を用いたSパラメータ測定、アンテナ放射パターン測定について概説するとともに、ミリ波・テラヘルツ波帯における誘電特性評価として自由空間Sパラメータ法によるInP基板、PTFEフィルム、PSフィルムの比誘電率を60~220 GHzで測定した。この結果、開発したミリ波・テラヘルツ波帯材料評価システムにおいて、複数の周波数帯での誘電率測定が可能であること、厚さが数10 µm~数mmの材料の比誘電率の測定が可能であることを明らかにした。今後、5G及び5G以降の次世代移動体通信システム(Beyond 5Gなど)におけるミリ波・テラヘルツ波帯の利活用のため、GaN-HEMTなどの化合物半導体電子デバイスの更なる高性能化や集積化、光デバイスとの融合技術の確立を目指すとともに、ミリ波・テラヘルツ波帯で動作する超高速無線通信モジュールの性能やモジュール構成材料の誘電特性などを高精度で測定可能な高周波計測技術の確立を目指す。謝辞本研究開発の一部は総務省「電波資源拡大のための研究開発(JPJ000254)」により実施された。【参考文献【1A. Endoh et al., “Fabrication technology and device performance of sub-50-nm-gate InP-based HEMTs,” Proc. IPRM2001, pp.448–451, 2001.2K. Shinohara et al., “Ultrahigh-speed pseudomorphic InGaAs/InAlAs HEMTs with 400-GHz cutoff frequency,” IEEE Electron Device Lett., vol.22, no.11, pp.507–509, 2001.3K. Shinohara et al., “InP-based HEMTs with a cutoff frequency higher than 450 GHz,” Proc. DRC2002, pp.163–166, 2002.4Y. Yamashita et al., “Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs With an Ultrahigh fT of 562 GHz,” IEEE Electron Device Lett., vol.23, no.10, pp.573–575, 2002.5X. B. Mei et al., “25 nm InP HEMT TMIC Process with 1 THz Amplifier Circuit Gain,” Proc. SSDM2015, p.1034, 2015.6R. Lai et al., “Sub 50 nm InP HEMT device with Fmax greater than 1 THz,” Proc. IEDM2007, p.609, 2007.7W. Snodgrass et al., “Pseudomorphic InP/InGaAs heterojunction bipolar transistors (PHBTs) experimentally demonstrating fT = 765 GHz at 25℃ increasing to fT = 845 GHz at -55℃,” Proc. IEDM2006, p.1, 2006.8M. Higashiwaki et al., “A comparative study of SiN deposition methods for millimeter-wave AlGaN/GaN HFETs,” Proc. DRC2008, pp.207–208, 2008.9https://www.tele.soumu.go.jp/j/sys/fees/purpose/kenkyu/10I. Watanabe et al., “Research and development of InP, GaN and InSb-based HEMTs and MMICs for terahertz-wave wireless communications,” Proc. IEEE Compound Semiconductor Integrated Circuit Symposium, pp.261–264, 2016.11H. Hamada et al., “20-Gbit/s ASK wireless system in 300-GHz-band and front-ends with InP MMICs,” Proc. 2016 URSI Asia-Pacific Radio Science Conference, no.S-D3-2, 2016.12H. Song et al., “Demonstration of 20-Gbps Wireless Data Transmission at 300 GHz for KIOSK Instant Data Downloading Applications with InP MMICs,” Proc. Int. Microwave Symposium, no.WEIF2, 2016.13S. Hara et al., “A 32Gbit/s 16QAM CMOS Receiver in 300GHz Band,” Proc. Int. Microwave Symposium, no.Th03F_1, 2017.14S. Hara et al., “A 416-mW 32-Gbit/s 300-GHz CMOS Receiver,” Proc. IEEE Int. Sym. on Radio-Frequency Integration Technology, no.TH_4A_5, 2017.15S. Hara et al., “300-GHz CMOS Transceiver for Terahertz Wireless Com-munication”, Proc. APMC2018, no.TH1-C1-2, 2018.16S. Hara et al., “32-Gbit/s CMOS Receivers in 300-GHz Band,” IEICE Trans. Electron., vol.E101-C, no.7, pp.464–471, 2018.17K. Shinohara et al., “Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications,” IEEE Trans. Electron Devices, vol.60, no.10, pp.2982–2996, 2013.18Y. Tang et al., “Ultrahigh-Speed GaN High-Electron-Mobility Transistors With fT/fmax of 454/444 GHz,” IEEE Electron Device Lett., vol.36, no.6, pp.549–551, 2015.19Y. Yue et al., “InAlN/AlN/GaN HEMTs With Regrown Ohmic Contacts and fT of 370 GHz,” IEEE Electron Device Lett., vol.33, no.7, pp.988–990, 2012.20S. Wienecke et al., “N-polar GaN cap MISHEMT with Record Power Density Exceeding 6.5 W/mm at 94 GHz,” IEEE Electron Dev. Lett., vol.38, no.3, pp.359–362, 2017.21Y. Yamashita et al., “Effect of InAlN barrier thickness on device perfor-mance for nanoscale gate InAlN/AlN/GaN HEMTs,” Proc. 12th Topical Workshop on Heterostructure Microelectronics, no.5-2, 2015.22山下他、“GaN自立基板を用いたInAlN/AlN/GaN HEMTのデバイス特性”,第63回応用物理学会 春季学術講演会,no.20, pp.11-157, 2016.23A. Endoh et al., “High Performance AlGaN/GaN Metal-Insulator-Semi-conductor High Electron Mobility Transistors Fabricated Using SiN/SiO2/SiN Triple-Layer-Insulators,” Jpn. J. Appl. Phys., vol.45, no.4B, pp.3364–3367, 2006.24Y. Yamashita et al., “Effect of Bottom SiN Thickness for AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors Using SiN/SiO2/SiN Triple-Layer Insulators,” Jpn. J. Appl. Phys., vol.45, no.26, pp.L666–L668, 2006.25M. Higashiwaki et al., “Enhancement-Mode AlN/GaN HFETs Using Cat-CVD SiN,” IEEE Trans. Electron Devices, vol.54, no.6, pp.1566–1570, 2007.26I. Watanabe et al., “Output power performance of InGaAs/InAlAs HEMT at 90-GHz band,” IEICE Technical Report 114, ED2014-101, 2014.27T. Kuwabata et al., “A 28 GHz 480 elements Digital AAS using GaN HEMT Amplifiers with 68 dBm EIRP for 5G Long-range Base Station Applications,” Proc. IEEE Compound Semiconductor Integrated Circuit Symposium, pp.1–4, 2017.28T. Yoshida et al., “Delay Time Analysis of InAlN-MIS-HEMTs on Si Sub-strates,” IEICE Technical Report 117, ED2017-94, 2017.29T. Ashley et al., “Indium Antimonide based Quantum Well FETs for Ultra-High Speed Electronics,” Proc. 64th Device Research Conference, pp.201–202, 2006.30T. Ashley et al., “Indium Antimonide Based Technology for RF Applica-tions,” Proc. IEEE Compound Semiconductor Integrated Circuit Sympo-sium, pp.121–124, 2006.31T. Tosaka et al., “Development of Complex Relative Permittivity Mea-surement System Based on Free-Space in 220-330-GHz Range,” IEEE Transactions on Terahertz Science and Technology, vol.5, no.1, pp.102–109, 2015.54 情報通信研究機構研究報告 Vol.66 No.2 (2020)3 超高周波ICT基盤技術 —素子から回路まで—
元のページ ../index.html#58