HTML5 Webook
119/238

ことで、放射線帯全体の変化を再現する。経験モデルと物理モデルを適切に結合することで、低計算コストで現実的な電子放射線帯環境の推定を実現する。これをリアルタイムで得られる太陽風データの下で再現することで、電子放射線帯環境に関する情報提供をリアルタイムで実現する。このモデルから得られる放射線帯環境データを個々の人工衛星に対して提供することで、障害リスク低減の運用方針を決めるために有用な宇宙天気情報の発信を目指す。参考文献】【1Miyoshi Y., Shinohara I., Takashima T., et al., “Geospace exploration project ERG,” Earth, Planets and Space, vol.70, 101, 2018. https://doi.org/10.1186/s40623-018-0862-02Reeves G., Mcadams K., Friedel R., and O’Brien T., “Acceleration and loss of relativistic electrons during geomagnetic storms,” vol.30, no.10, 2003. https://doi.org/10.1029/2002GL0165133Northrop T.G., “The Adiabatic Motion of Charged Particles,” Wiley-In-terscience, New York, 1963. ISBN 978-04706513914Roederer J.G., “Dynamics of Geomagnetically Trapped Radiation,” Springer, New York, 1970. https://doi.org/10.1007/978-3-642-49300-35Lejosne S., and Kollmann, P., “Radiation Belt Radial Diffusion at Earth and Beyond,” Space Science Reviews, vol.216, no.1, 19, 2020. https://doi.org/10.1007/s11214-020-0642-66Cohen I. J., Mauk B. H., Anderson B. J., Westlake J. H., Sibeck D. G., Turner D. L., et al., “Statistical analysis of MMS observations of ener-getic electron escape observed at/beyond the dayside magnetopause,” Journal of Geophysical Research: Space Physics, vol.122, no.9, pp.9440–9463, 2017. https://doi.org/10.1002/2017ja024401 7Baker D. N., and Stone E. C., “The magnetopause electron layer along the distant magnetotail,” Geophysical Research Letters, vol.4, no.4, pp.133–136, 1977. https://doi.org/10.1029/gl004i004p001338Baker D. N. and Stone E. C., “The magnetopause energetic electron layer, 1. Observations along the distant magnetotail,” Journal of Geo-physical Research: Space Physics, vol.83, Issue A9, pp.4327–4338, 1978. https://doi.org/10.1029/ja083ia09p043279Inan U. S., Bell T. F., and Helliwell R. A., “Nonlinear pitch angle scat-tering of energetic electrons by coherent VLF waves in the magneto-sphere,” J. Geophys. Res., vol.83, Issue A7, pp.3235–3253, 1978. doi:10.1029/JA083iA07p0323510Omura Y., Furuya N., and Summers D., “Relativistic turning accel-eration of resonant electrons by coherent whistler mode waves in a dipole magnetic field,” J. Geophys. Res., vol.112, A06236, 2007. doi:10.1029/2006JA01224311Fujimoto M. and Nishida A., “Monte Carlo simulation of energization of jovian trapped electrons by recirculation,” J. Geophys. Res., vol.95, Issue A4, pp.3841– 3853, 1990. doi:10.1029/JA095iA04p0384112Ozeke L. G., Mann I. R., Murphy K. R., Jonathan Rae I., and Milling D. K., “Analytic expressions for ULF wave radiation belt radial diffusion coefficients,” J. Geophys. Res. Space Physics, vol.119, pp.1587–1605, 2014. doi:10.1002/2013JA01920413Sakaguchi K., Miyoshi Y., Saito S., Nagatsuma T., Seki K., and Murata K. T., “Relativistic electron flux forecast at geostationary orbit using Kalman filter based on multivariate autoregressive model,” Space Weather, vol.11, pp.79– 89, 2013. doi:10.1002/swe.2002014Sakaguchi K., Nagatsuma T., Reeves G. D., and Spence H. E., “Predic-tion of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models,” Space Weather, vol.13, pp.853–867, 2015. doi:10.1002/2015SW00125415Tsyganenko N. A. and Sitnov M. I., “Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms,” J. Geophys. Res., vol.110, A03208, 2005. doi:10.1029/2004JA01079816Tsyganenko N. A. and Mukai T., “Tail plasma sheet models derived from Geotail particle data,” J. Geophys. Res., vol.108, Issue A3, 2003. doi:10.1029/2002JA00970717Saito S., Miyoshi Y., and Seki K., “Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSIS-RBW simulations,” J. Geophys. Res., vol.117, Issue A10, 2012. doi:10.1029/2012JA01802018Saito S., Miyoshi Y., and Seki K., “Rapid increase in relativistic electron flux controlled by nonlinear phase trapping of whistler chorus elements,” J. Geophys. Res. Space Physics, vol.121, Issue 7, pp.6573–6589, 2016. doi:10.1002/2016JA022696.19Saito S., Kurita S., Miyoshi Y., Kasahara S., Yokota S., Keika K., et al., “Data-driven simulation of rapid flux enhancement of energetic elec-trons with an upper-band whistler burst,” Journal of Geophysical Re-search: Space Physics, vol.126, Issue 4, e2020JA028979, 2021. https://doi.org/10.1029/2020JA028979齊藤慎司 (さいとう しんじ)電磁波研究所電磁波伝搬研究センター宇宙環境研究室研究員博士(工学)超高層大気物理1133-2 放射線帯粒子シミュレーション

元のページ  ../index.html#119

このブックを見る