3B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y Arcas, “Communication-efficient learning of deep networks from decentralized data,” Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), pp.1273–1282, 2017.4Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Trans. Intell. Syst. Technol., vol.10, no.2, p.12, 2019.5Y. Gao et al., “Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things,” IEEE Transactions on Computers, 2021.6Qi Xia, Winson Ye, Zeyi Tao, Jindi Wu, and Qun Li, “A survey of federated learning for edge computing: Research problems and solutions,” High-Confidence Computing, vol.1, issue 1, 2021,1000087Ziyu Liu, Shengyuan Hu, Zhiwei Steven Wu, and Virginia Smith, “On Privacy and Personalization in Cross-Silo Federated Learning,” https://arxiv.org/abs/2206.07902, 2022.8Goodfellow, I., Bengio, Y., Courville, A.. Deep Learning, MIT Press, 2016. ISBN: 97802620356139Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian Becker, Schahram Dustdar, Thomas Hiessl, Dieter Kranzlmüller, Madhusanka Liyanage, Setareh Maghsudi, Nitinder Mohan, Jörg Ott, Jan S. Rellermeyer, Stefan Schulte, Henning Schulzrinne, Gürkan Solmaz, Sasu Tarkoma, Blesson Varghese, and Lars Wolf “Roadmap for edge AI: a Dagstuhl perspective,” SIGCOMM Comput. Commun. Rev.52, 1 Jan. 2022.10Chandra Thapa, M.A.P. Chamikara, Seyit Camtepe, and Lichao Sun, “SplitFed: When Federated Learning Meets Split Learning,” AAAI 2022.11Do-Van Nguyen and Koji Zettsu “Spatially distributed Federated Learning of Convolutional Recurrent Neural Networks for Air Pollution Prediction,” IEEE BigData 2021, pp.3601-3608, 2021.12Zhao, Peijiang and Zettsu, Koji. “Convolution Recurrent Neural Networks Based Dynamic Transboundary Air Pollution Prediction,” IEEE BigData 2019, pp.410–413, 2019. 10.1109/ICBDA.2019.8712835.13Anh Khoa Tran, Do-Van Nguyen, Minh-Son Dao, and Koji Zettsu “Fed xData: A Federated Learning Framework for Enabling Contextual Health Monitoring in a Cloud-Edge Network,”. IEEE BigData 2021, pp.4979–4988, 2021.14Anh Khoa Tran, Do-Van Nguyen, Phuoc Van Nguyen Thi, and Koji Zettsu “FedMCRNN: Federated Learning using Multiple Convolutional Recurrent Neural Networks for Sleep Quality Prediction,” Proceedings of the 3rd ACM Workshop on Intelligent Cross-Data Analysis and Retrieval (ICDAR ‘22). 15Ngoc-Thanh Nguyen, Minh-Son Dao, and Koji Zettsu” Leveraging 3D-Raster-Images and DeepCNN with Multi-source Urban Sensing Data for Traffic Congestion Prediction,” DEXA (2): 2020, pp.396–406, 202016Minh-Son Dao, Dinh-Duy Pham, Manh-Phu Nguyen, Thanh-Binh Nguyen, and Koji Zettsu “MM-trafficEvent: An Interactive Incident Retrieval System for First-view Travel-log Data,” IEEE BigData 2021, pp.4842–485117Y. Gao et al., “End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things,” 2020 International Symposium on Reliable Distributed Systems (SRDS), 2020, pp.91–100, 2020. doi: 10.1109/SRDS51746.2020.00017.18Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin, “Federated learning on non-IID data: A survey,” Neurocomputing, vol.465, issue Nov. 2021, pp.371–390.Do-Van NGUYEN (グエン ド ヴァン)Senior Researcher, Big Data Integration Research Center, Universal Communication Research InstitutePh.D.Artificial Intelligence, Machine Learning, Big Data, Smart Systems Anh-Khoa TRAN (チャン アイン クア)Researcher, Big Data Integration Research Center, Universal Communication Research InstitutePh.D.Artificial Intelligence, Machine Learning, Internet of Things, Edge Computing 1854-4 パブリック・プライベートデータを活用した予測モデリングを実現する連合学習によるエッジAI
元のページ ../index.html#191