
	 Introduction

We daily struggle with processing large amounts of (un)
intentionally-collected raw data (e.g., statistics, numbers, 
texts, images, audio) to get insights from our world. 
Nevertheless, smart data is a type of data we want to have 
instead of dealing with raw data containing redundant, 
even useless information. Smart data results from raw 
data’s analysis and interpretation, making it possible to 
draw value from it effectively. Hence, we need intelligent 
layers to embed in data collectors and storage to produce 
such smart data for further downstream applications. The 
process that turns a set of raw data into smart data could 
be considered smart data analytics. We can see many algo-

rithms, products, and techniques using the prefix “smart” 
to express that they have smart data in their products, such 
as smart IoT, smart dashcams, and smart clouds. 

Human beings have cognition of the surrounding world 
by sensing from different perspectives (e.g., see, hear, smell, 
feel, taste). Hence, devices made by human beings tend to 
record/capture data of the surrounding world in the same 
way human beings do. Each type of data recorded/gener-
ated by a particular device/method represents how some-
thing happens or is experienced, and that representative 
can be concerned as a modality. A research problem or 
dataset that includes multiple such modalities is considered 
multimodal, and AI techniques that deal with multimodal 
are called multimodal AI.
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近年、マルチモーダルやクロスモーダルといった AI 技術が注目されている。前者は、バラバラ
で不均質データを収集し、相互に情報を補完することでロバストな予測を実現することを目的と
している。後者は、あるモダリティのデータから別のモダリティのデータを予測し、両者に共通
する注目点を発見することを目的としている。両者は、収集した異種データからスマートデータ
を生成するという点で共通しているが、前者はより多くのモダリティを要求し、後者はモダリ
ティの種類を減らすことを目的としている。本稿では、まず、スマートデータ解析におけるマル
チモーダル及びクロスモーダル AI の役割について一般的に論じる。そして、これらのアプローチ
のバランスよく組み合わせ様々な応用への拡張を容易にするためのマルチモーダル及びクロス
モーダル AI フレームワーク（MMCRAI）を紹介する。このフレームワークは xData（クロスデータ）
プラットフォーム (xData PF) 統合されている。また、このフレームワークと xDataPF をベースに
構築された様々なアプリケーションを紹介し、議論する。

Recently, the multimodal and crossmodal AI techniques have attracted the attention of com-
munities. The former aims to collect disjointed and heterogeneous data to compensate for comple-
mentary information to enhance robust prediction. The latter targets to utilize one modality to predict 
another modality by discovering the common attention sharing between them. Although both ap-
proaches share the same target: generate smart data from collected raw data, the former demands 
more modalities while the latter aims to decrease the variety of modalities. This paper first dis-
cusses the role of multimodal and crossmodal AI in smart data analysis in general. Then, we intro-
duce the multimodal and crossmodal AI framework (MMCRAI) to balance the abovementioned 
approaches and make it easy to scale into different domains. This framework is integrated into 
xDataPF (the cross-data platform). We also introduce and discuss various applications built on this 
framework and xDataPF.
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The advantage of multimodal is that we can have joint 
representative space that can compensate for the lack of 
information on each disjoint modality and strengthen the 
robust prediction of high-correlation modalities. Hence, we 
can build models that process and correlate data from 
multiple modalities.

Many surveys have been done to understand the use of 
multimodal AI for smart data analysis. In reference [1], the 
authors list out challenges of multimodal machine learning 
(e.g., representation, translation, alignment, fusion, co-
learning), data types (e.g., texts, videos, images, audios) and 
applications (e.g., Speech recognition and synthesis, Event 
detection, Emotion and affect, Media description, 
Multimedia retrieval). In reference [2], the authors empha-
size a particular domain computer vision, and introduce 
advances, trends, applications, and datasets of multimodal 
AI. In this survey, the authors discuss the general architec-
ture of multimodal deep-learning, where a particular fea-
ture extraction first precedes each modality to create a 
modality representation. Then, these representations are 
fused into one joint representative space and project this 
space into one unique similarity measure. Several deep 
learning models are concerned in this survey, including 
ANN, CNN, RCNN, LSTM, etc.

In reference [3], the authors mention crossmodal learn-
ing for dealing with the issue when there is a need for 
mapping from one modality to another and back, as well 
as representing them in joint representation space. This 
direction is similar to human beings’ learning process - 
composers a global perspective from multiple distinct 
senses and resources. For example, text-image matching, 
text-video crossmodal retrieval, emotion recognition, and 
image-captioning are the most popular crossmodal applica-
tions where people can use one modality to query another 
one [4]–[6]. The main difference between multimodal and 
crossmodal learning is that crossmodal requires sharing 
characteristics of different modalities to compensate for the 
lack of information towards enabling the ability to use data 
of one modality to retrieve/query/predict data of another 
modality. Unfortunately, this research direction is far from 
the expectation and has a big gap among research teams 
and domains [7].

In light of the abovementioned discussions, we are 
conducting research and development to build a multi-
modal and crossmodal AI framework for smart data 
analysis. The framework aims to provide additional intel-
ligent layers to data analysis progress that can flexibly 
change from using only multimodal AI, crossmodal AI, or 

hybrid multi-crossmodal AI for analyzing data. We also 
introduce several instances of this framework designed for 
a particular domain, such as air pollution forecast, conges-
tion prediction, and traffic incident querying.

	 Multimodal and Crossmodal AI  
	 Framework for Smart Data Analysis 

We have researched and developed the Multimodal and 
Crossmodal AI Framework (MMCRAI) to contribute to 
the evolution of multimodal and cross-modal AI in smart 
data analysis. This framework’s significant advantage is 
creating a hybrid backbone that can flexibly be re-con-
structed in different ways to build a suitable individual 
model for a particular problem. The framework is designed 
to take into account the following criteria:

–	 Strengthen the robust prediction by enhancing simi-
lar modalities (i.e., multisensors capture the same 
data)

–	 Enhance robust inferences and generate new insights 
from different modalities by carrying complemen-
tary information about each other during the learn-
ing process (e.g., fusion, alignment, co-learning).

–	 Establish cross-modal inferences [8] to overcome 
noisy and missing data of one modality by using 
information (e.g., data structure, correlation, atten-
tion) found in another modality.

–	 Discover cross-modal attention to enhance cross-
modal search (e.g., languagevideo retrieval, image 
captioning, translation) or ensure the semantic-har-
mony among modalities (e.g., cheapfakes detection).

Currently, multimodal and crossmodal approaches 
work independently due to the domain-dependently inten-
tional-architecture design. Hence, a framework that allows 
people to integrate multimodal and crossmodal into a 
uni-progress can enhance the scaling and the ability to 
connect or incorporate different uni-progresses to solve 
multi-domain problems.

We design the framework as the hierarchical structure 
of multimodal and crossmodal approaches where a suitable 
approach can be utilized depending on the purpose of 
application. Figure 1 illustrates the framework’s general 
structure that aims to create a joint multimodal representa-
tion by embedding every single-modal representation into 
a common representation space. The design starts with the 
data pre-processing component. Here disjoint modalities 
are gathered and pre-proceed, such as cleansing, fusing, 
and augmenting. Next, those modalities that do not need 
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to have a crossmodal translation (i.e., bidirectional map-
ping) are sent to the multimodal space component. 
Applications requiring retrieval and classification tasks 
without translating from the multimodal representation to 
the single-modal ones can utilize this component without 
going further. Applications that require crossmodal transla-
tion in addition to classification tasks, such as multimodal 
query expansion and crossmodal retrieval, should go to the 
joint representation space and bidirectional mapping com-
ponents. Based on this general structure, we have developed 
an MM-sensing family with two representatives, MM-AQI 
and MM-trafficEvent, and 3DCNN for dealing with air 
pollution, safety driving, and congestion problems. While 
3DCNN and MM-trafficEvent focus on multimodal and 
crossmodal approaches, MM-AQI mixes both techniques.

	 MM-Sensing 

The MM-sensing stands for Multimedia Sensing, a 
virtual intelligent sensor that can predict complex events 
in the real world from multimodal observation data such 
as images, videos, sensory data, and texts. As represented 
in the name, MM-sensing mainly deals with multimedia 
data that occupy a significant portion of data due to the 
explosion of multimedia IoT devices and the high-speed 
bandwidth of the Internet (e.g., 5G, 6G). Another reason 
to build MM-sensing is that multimedia data contain vast 
semantic meaning that is hard to extract.  Hence, it could 
be good to have an independent component that can 
provide high-semantic information to the other processes 
or applications.

The following subsections will explain how to down-
stream the general framework into different applications 
running in various domains. We introduce MMAQI and 

MM-trafficEvent as two downstream versions of the gen-
eral framework working in air pollution prediction and 
traffic incident querying

3.1	 MM-AQI: a crossmodal AI for estimating air 
quality index from lifelog images 

Air pollution harmfully impacts human life, including 
health, economy, urban management, and climate change 
[9]. Unfortunately, air pollution prediction is not a trivial 
problem that can predict a new value using a sole data 
source. Many factors can impact the air pollution predic-
tion, such as human activities (e.g., transportation, mining, 
construction, industrial and agricultural activities), 
weather (e.g., winds, temperature, humidity), and natural 
disasters (e.g., volcano eruptions, earthquakes, wildfires). 
Moreover, using data captured by individual modalities 
may not gather complementary information to express the 
correlation and causality among factors with air pollution. 
Hence, the approach of multimodal learning that consoli-
dates multi modalities from various mentioned factors into 
a single air pollution prediction model has become popular 
[10]–[12].

Although many methods have been established to 
monitor and predict air pollution, an eco-friendly and 
personal-usage method is still the most significant chal-
lenge. Expensive and large-scale deployed devices that 
provide high-quality air pollution data do not exist in a 
dense grid in developed countries, and the situation can be 
worse in developing and emerging countries. Besides, to 
cope with such big multimodal data, there is a need for 
supercomputers or luxury GPU servers, which makes it 
hard to have an eco-friendly and personal-usage applica-
tion for personal usage.

To cope with this challenge, we design a crossmodal 

3

ig. F 1　The multimodal and crossmodal AI framework: a general design (VAE: Variational Autoencoders, Aug-Data: Augmented Data)
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AI, MM-AQI, a member of the MM-sensing family that 
can estimate the current air pollution level (i.e., PM2.5) 
using lifelog images. Lifelog images are a set of images 
captured periodically for a long time by a personal camera. 
MM-AQI hypothesizes that lifelog images may contain 
information that correlates to air pollution. Hence, we can 
use only lifelog images, plus position and time data, to 
predict air pollution. The scenario is that a user takes a 
picture with his/her smartphone, or a personal camera that 
can connect to the smartphone, the crossmodal AI installed 
in the smartphone will estimate the current air pollution 
level. First, we use multimodal datasets collected from air 
pollution stations, mobile devices, and lifelog cameras over 
a particular area to analyze the correlation between the 
surrounding environment (e.g., human activities, weather, 
natural disasters) and air pollution. This step helps us de-
cide which features extracted from images can correlate 
with the air quality index. In other words, we discover the 
cross attention between image features and air quality index 
values. Then, we build a crossmodal AI to predict the air 
quality index using only lifelog images. That meant, we 
need crossmodal translation to translate implicit human 
activities, weather, and natural disasters from lifelogging 
images to air quality index values. 

Figure 2 illustrates the results of correlation analysis 
between the surrounding environment and air pollution. 
We recognize that lifelog images and air pollution captured 
and measured at the same spatiotemporal dimension can 
map from one to another and back and represent them in 
joint representation space. Hence, we modify the MM-

sensing general structure to create the MM-AQI crossmo-
dal AI to predict air pollution using lifelog images, as 
depicted in Fig. 3. We keep the data-preprocessing, joint 
representation space, and bidirectional mapping compo-
nents. In contrast, the multimodal space component is 
replaced by the prior knowledge created by learning the 
correlation among images and AQI at the same place over 
time. Based on the correlation analysis on a historical da-
taset of both lifelog images and AQI, we can build the 
prior knowledge to help us design global and domain-
specific features. As shown in Fig. 2, the area features such 
as the green zone, dirty zone, street zone, and sidewalk 
zone, and object features such as vehicles, trees, pedestrians, 
and haze have a tight correlation with the fluctuation of 
AQI value. Hence, we take these features as domain-spe-
cific while using deep learning embedding vectors as 

ig. F 2　The correlation between the surrounding environment (e.g., human activities, natural disasters) and air pollution [13]

ig. F 3　MM-AQI: The application-wise design
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global to consider both low and high-semantic features in 
the joint representation space. The key idea here is to esti-
mate complete AQI from noisy and missing observations 
of one sensory modality (i.e., air pollution device) using a 
structure found in another (i.e., images). In other words, 
with this model, we can estimate the AQI value by simply 
using all features extracted from an image mapped and 
linked to a proper AQI level inside the joint representation 
space and by the bidirectional mapping.

The evaluation conducted using three different datasets 
collected from Japan, Vietnam, and India provides an ac-
curacy of over 80% (F1-score). That is an impressive result 
when running on a low-cost device (e.g., smartphones). 
Besides, MM-AQI not only estimates the air quality index 
but also offers several cues to understand the causality of 
air pollution (Fig. 4). Thanks to MM-sensing flexible archi-
tecture, both autoencoder-decoder and transformer archi-
tectures can be applied to design MM-AQI crossmodal. For 
more details, readers can refer to the original paper of 
MM-AQI [13] and its extension version [14].

3.2	 MM-trafficEvent: A crossmodal with attention 
to query images from textual queries 

Dashcam, a video camera mounted on a vehicle, has 
become a popular and economical device for increasing 
road safety levels [15]. A new generation of the dashcam, 
the smart dashcam, not only records all events happening 
during a journey but also alerts users (e.g., drivers, manag-
ers, coaches) of potential risks (e.g., crash, near-crash) and 
driving behaviors (e.g., distraction, drowsiness). One of the 
significant benefits of dashcam footage is that it can provide 
insights from dashcam data to support safe driving [16] 
(e.g., evidence to the police and insurance companies in 
traffic accidents, self-coaching, fleet management). 
Unfortunately, a significant obstacle to events retrieval is a 
lack of searching tools for finding the right events from a 
large-scale dashcam database. The conventional approach 
to finding an event from dashcam footage is to manually 
browse a whole video from beginning to end. It consumes 
a lot of workforces, time, and money. The challenge is the 
semantic gap between textual queries made by users and 
visual dashcam data. It needs a crossmodal translation to 
enable the ability to retrieve related data of one modality 
(e.g., dashcam video shots) with data of another modality 
(e.g., textual queries) [5][7].

To provide a user-friendly tool that can support users 
in quickly finding an event they need, we introduce MM-
trafficEvent as a text-image crossmodal with an attention 
search engine by modifying the MMCRAI general archi-
tecture. Figure 5 illustrates the design of this function. 
First, we replace “AI modal” modules with encoder models 
(i.e., Xception for image, BERT for text) that aim to nor-
malize and polish raw data into vector spaces. Second, we 
design the attention mechanisms as the joint representative 
space to provide an additional focus on a specific area that 
has the same mapping from different modalities. In other 
words, we utilize self and multi-head attention techniques 
[17] to generate the bidirectional mapping between text 
and image. In this design, we replace the joint representa-
tive space and bidirectional mapping with multi-head at-
tention block and cross-modal attention scores, depicted in 
Fig. 5.

The significant difference between our model and oth-
ers is that we do not have a full training dataset of text-
image pairs. In other words, we do not have the annotation/
caption of each incident/suspect event image. Hence, creat-
ing a complete text-image crossmodal retrieval is almost 
impossible by using only the dashcam video dataset. Instead 
of applying crossmodal translation directly, we utilize 

able T 1　PM2.5 Prediction Accuracy Comparison (F1-score) 

ig. F 4　MM-AQI: An example of high PM2.5 and human activities 
captured by lifelog camera [13]. In this case, objects = 
{vehicles}, areas = {dirty/dust}, and abnormal high value of 
PM2.5 appear at the same place and time 
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word-visual attention pre-trained model for transforming 
the query and the dataset to the same space (i.e., joint 
representative space). We use available text-image pairs 
open datasets with our datasets collected during interactive 
querying with users for downstream the pre-trained 
model to adapt to our domain. Hence, when users input 
their textual queries, we utilize our crossmodal text-image 
to find a set of sample images used again as visual queries 
to search over the dashcam dataset.

We use various datasets gathered from public sources 
and created by ourselves. We asked two volunteers to label 
data and created a structured data set Dk = {(Ik; [Tki])} 
where Ik denotes ith image, and [Tki] represents a list of 
captions similar with that image. In our dataset, we have 
only a set of Dk = {(Ik; [Tki])} and in practice, we also use 
a dataset from RetroTruck and I4W datasets with a set of 
5 captions for each image to generate the pre-trained 
weight set.

Table 2 shows that the system has good productivity 
when users almost found their results in the first round 
with the average of P@10 as 7.18 (i.e., seven relevant results 
over ten retrieved results at the first try). Statistically, the 
system works well when finding the expected results 
within 15 loops with naïve users and 10 loops with expert 
users. Besides, the simulation results confirm the interac-
tive GUI’s an advantage when decreasing the P@K from 
200 to 10. Figure 6 illustrates one example of events re-
trieved by our system with different difficult levels of se-

ig. F 5　MM-trafficEvent: A cross-modal multi-head attention model 

ig. F 6	 MM-trafficEvent: A sample of query-result outputs (a) Q: “find an accident made by a van and a red bus” [semantic level = easy], (b) 
Q: “find an accident where a white truck hit a white van from behind” [semantic level = complex], (c) Q: “find a moment a truck stop 
closed to the zebra zone where a lot of pedestrians and bicycles are crossing” [semantic level = most complex]. (a)(b) from I4W and 
RetroTruck datasets, (c) from our dataset

able T 2　Incident querying results using MM-trafficEvent model [19]
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mantic levels of textual queries (i.e., easy, complex, most 
complex). For more details, readers can refer to the original 
paper of MM-trafficEvent [18][19]

	 3DCNN: A Multimodal AI Model for  
	 Spatio-temporal Event Prediction　 

The typical approach to dealing with multimodal data 
is data fusion, which aims to collect significant fragments 
of an object distributed in different modalities and normal-
ize these fragments into the same space for easier manipu-
lation. Three fusion methods are popular: early, late, and 
collaborative fusion [20]. The first one fuses data first and 
processes the fuse data with specific models. The second 
one performs data analysis of each information indepen-
dently with a particular model, then combines the outputs 
as the outcome. The last one aims to promote collaboration 
among modalities to achieve the ideal consensus. Hence, 
we introduce a 3DCNN model with a specific collaborative 
fusion mechanism, called raster-images, to fuse spatio-
temporal multimodal data into one unique data format that 
up-to-date computer vision deep learning models can ef-

ficiently utilize. Unlike other multimodal methods working 
with spatio-temporal data, we want to embed the spatio-
temporal dimension into our model without converting 
them into an alternative space. In other words, we want to 
keep the geometry topology (i.e., time and location) and 
map other data into this coordination before projecting a 
whole dataset to other spaces. To do that, we convert the 
MMCRAI framework to have two main components: 
spatio-temporal-based data wrapping and multimodal 
space working as collaborative fusion and multimodal 
embedding.

To conduct the collaborative fusion, we invent a new 
fusion schema that can wrap different modalities into one 
unique spatial modality, namely a raster image. Using hash-
ing techniques, we distribute multimodal data collected 
within a specific time window into three channels (R, G, 
B) of a raster image whose pixels represent particular map 
areas (i.e., spatio-temporal constraints). When arranging 
these raster images along a time dimension, we produce a 
so-called raster video whose frames are raster images. 
Hence, the raster image perfectly replaces the multimodal 
space component of the general framework and guarantees 

4

ig. F 7　3D-CNN Multi-sources data deep learning architecture [26] 
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the consensus of modalities projected on the same spatio-
temporal dimension. At this stage, we can apply AI models 
(e.g., CNN, LSTM, RNN, Transformer) to create multi-
modal embedding that will be utilized to predict events. In 
our case, we develop a model based on 3D convolutional 
neural networks (3DCNN) architecture that can extract 
necessary features from a raster video input to form the 
multimodal embedding. Figure 7 illustrates one of our 
3DCNN models published in IEEE Big Data 2019 [21].  

To demonstrate the efficiency and influence of the 
3DCNN, we apply this model to predict congestion using 
open data sources that can easily access in cyberspace. We 
leverage our observation of the correlation between bad 
weather (e.g., heavy rain, flood, snow), traffic congestion, 
and human behavior (e.g., claim about congestion and/or 
bad weather on SNS) during the bad period to decide 
which data sources to be imported to our model. Hence, 
we utilize data captured from social networks (e.g., Twitter), 
meteorology agencies (e.g., XRAIN precipitation data www.

diasjp.net), and traffic agencies (e.g., Traffic Congestion 
Statistics Data www.jartic.or.jp) as our multi modalities.

The reason for choosing the congestion prediction 
topic is that congestion is one of the most prevalent trans-
port challenges in large urban agglomerations [22]. 
Therefore, a robust prediction of congestion and congestion-
surrounding-environment correlation discovery using data 
from different sources became the most significant demand 
from society. Many researchers have developed several 
multimodal AI models to predict congestion [23]–[25]. The 
common idea of these methods is to create a joint multi-
modal representation by embedding every single-modal 
representation into a common representation space, with 
or without constraints of time and locations. Compared to 
these methods, the 3DCNN model significantly differs by 
turning the multimodal space or joint representation space 
into a popular data format (i.e., videos) and the ability to 
wrap unlimited modalities into one space without any 
extra activities.

Figure 8 depicts how to wrap three different modalities 
into one space. First, we convert each modality into an 
individual channel by picking a data value from one mesh 
code and convert it into one pixel. The (longitude, latitude) 
of the mesh code is mapped into an image’s (width, height), 
and the data value is normalized into [0, 255]. Then, we 
merge these channels to make the raster image (R, G, B).

Figure 9 depicts one example of using 3DCNN to 
predict short-term congestion using traffic congestion, 
weather, and tweets data over the Kobe-Japan area. As 
depicted in Fig. 9, each picture is a single-channel raster 
image instance containing only congestion information 
over the transportation network of the Kobe area. Each 
pixel of this image reports the congestion level of one mesh 
code. The brighter color is the heavier congestion. The 
latest version of 3DCNN gains outstanding results with 
MAE=8.13 compared to other methods, as denoted in 
Table 3. For more details, readers can refer to the original 
paper of 3DCNN [21] and its last extension version [26]. 

	 Conclusions 

In this paper, we comprehensively discuss the vital role 

5

ig. F 8　Collaborative Fusion by wrapping data into a raster video [21] 

able T 3　Traffic congestion prediction models comparison [26] 
able T (measured by MAE, lower is better) 

ig. F 9　Short-term predicting results using 3D-CNN model on 
traffic congestion, precipitation, and tweets data [21], based 
on the raster image created as in Fig. 8 

166　　　情報通信研究機構研究報告 Vol.68 No.2 （2022）

2022U-04-02.indd　p166　2022/12/08/ 木 00:35:50

4　スマートデータ利活用基盤技術



of multiple modalities of data and crossmodal AI tech-
niques in understanding the surrounding world. We also 
introduce our multimodal and crossmodal AI framework 
for smart data analytics. Moreover, we present three in-
stances of this framework to tackle air pollution, traffic 
incident query, and congestion prediction problems. For 
each instance, we discuss the motivation and hypothesis by 
which we can adjust the general framework to adapt dif-
ferent multimodal datasets and crossmodal AI to solve the 
problem. In the future, we will continue to extend the 
framework and develop accurate AI models to deal with 
more challenges. We also want to investigate more on mak-
ing the framework able to work in a mobile environment 
(e.g., IoT devices) and distributed networks (e.g., Federated 
Learning). 

eferencesR
	 1	 Baltrusaitis, T., Ahuja, C., and Morency, L.P., “Multimodal Machine Learning: 

A Survey and Taxonomy,” IEEE Trans. Pattern Anal. Mach. Intell. vol.41, issue 2, 
pp.423–443, Feb. 2019. 

	 2	 Bayoudh, K., Knani, R., Hamdaoui, F. et al, “A survey on deep multimodal 
learning for computer vision: advances, trends, applications, and datasets,” 
Vision Computing, vol.38, pp.2939–2970 ,2022.

	 3	 Vukotic, V., Raymond, C., and Gravier, G., “Bidirectional Joint Representation 
Learning with Symmetrical Deep Neural Networks for Multimodal and 
Crossmodal Applications,” Int. Conf. on Multimedia Retrieval (ICMR ’16), 
pp.343–346, 2016.

	 4	 Wang, K.Y., Yin, Q.Y., Wang, W., Wu, S., and Wang, L, “A Comprehensive 
Survey on Cross-modal Retrieval,” CoRR abs/1607.06215 ,2016.

	 5	 Ji et. al: CRET, “Cross-Modal Retrieval Transformer for Efficient Text-Video 
Retrieval,” SIGIR ’22, July 11–15, pp.949–959, 2022.

	 6	 Khare, A., Parthasarathy, S., and Sundaram, S., “Self-Supervised Learning with 
CrossModal Transformers for Emotion Recognition,” IEEE Spoken Language 
Technology Workshop (SLT), pp.381–388, 2021.

	 7	 Zhang, J.W., Wermter, S., Sun, F.C., Zhang, C.S., Engel, A.K, R¨oder, B., and 
Fu, X.L., “Editorial: Cross-Modal Learning: Adaptivity, Prediction and 
Interaction,” Frontiers in Neurorobotics, vol.16, Article 889911, April 2022.

	 8	 Ravela, S., Torralba, A., Freeman, W. T., “An ensemble prior of image structure 
for cross-modal inference,” Tenth IEEE International Conference on Computer 
Vision (ICCV’05) vol.1, pp.871–876, 2005.

	 9	 Lu, G.J., “Air pollution: A systematic review of its psychological, economic, and 
socialeffects.” Current Opinion in Psychology, vol.32, pp.52–65, 2020.

	10	 Duong, Q.D., Le, M.Q., Nguyen-Tai, T.L., Nguyen, D.H., Dao, M.S., and Nguyen, 
T.B., “An Effective AQI Estimation Using Sensor Data and Stacking Mechanism,” 
SoMeT 2021, pp.405–418, 2021.

	11	 Zhao, P. and Zettsu,K., “MASTGN: Multi-Attention Spatio-Temporal Graph 
Networksfor Air Pollution Prediction,” IEEE Big Data 2020, pp.1442–1448, 
2020.

	12	 Liang, Y.C., Maimury, Y., Chen, A.L., and Juarez J.R.C., “Machine Learning-
Based Prediction of Air Quality,” Applied Sciences. 2020, vol.10, no.24, 9151.

	13	 Dao, M.S., Zettsu, K., and Uday, R.K., “IMAGE-2-AQI: Aware of the 
Surrounding Air Qualification by a Few Images,” IEA/AIE (2): pp.335–346, 
2021.

	14	 La, T.V., Dao, M.S., Tejima, K., Uday R.K., and Zettsu, K., “Improving the 
Awareness of Sustainable Smart Cities by Analyzing Lifelog Images and IoT Air 
Pollution Data,” IEEE BigData 2021, pp.3589-3594, 2021.

	15	 Adamov´a, V., “Dashcam as a device to increase the road safety level,” Int. Conf. 

on Innovations in Science and Education (CBU), pp.1–5, 2020.
	16	 Kim, J., Park, S., and Lee, U., “Dashcam witness: Video sharing motives and 

privacy concerns across different nations,” IEEE Access, vol.8, pp.425–437, 2020.
	17	 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, 

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, “Attention is all you 
need,” Proceedings of the 31st International Conference on Neural Information 
Processing Systems (NIPS’17).

	18	 Mai-Nguyen, A.V., Phan, T.D., Vo, A.K., Tran, V.L., Dao, M.S., and Zettsu, K., 
“BIDAL-HCMUS@LSC2020: An Interactive Multimodal Lifelog Retrieval with 
Query-to-Sample Attention-based Search Engine,” LSC@ICMR 2020: pp.43–49.

	19	 Dao, M.S., Pham, D.D., Nguyen, M.P., Nguyen, T.B., and Zettsu, K., “MM-
trafficEvent: An Interactive Incident Retrieval System for First-view Travel-log 
Data,” IEEE BigData 2021, pp.4842–4851, 2021.

	20	 Wang, Y., “Survey on Deep Multi-modal Data Analytics: Collaboration, Rivalry 
and Fusion,” J. ACM 37, 4, Article 111,(Aug. 2018.

	21	 Dao, M.S., Nguyen, N.T., and Zettsu, K., “Multi-time-horizon Traffic Risk 
Prediction using Spatio-Temporal Urban Sensing Data Fusion,” 2019 IEEE 
International Conference on Big Data (Big Data).

	22	 Rodrigue, J.-P., “The Geography of Transport Systems, FIFTH EDITION, New 
York: Routledge, p.456, 2020. ISBN 978-0-367-36463-2

	23	 Akhtar, M. and Moridpour, S., “A Review of Traffic Congestion Prediction 
Using Artificial Intelligence,” Journal of Advanced Transportation, vol.2021, 
Article ID 8878011, p.18, 2021.

	24	 Kumar, N and Raubal, M., “Applications of deep learning in congestion detec-
tion, prediction and alleviation: A survey,” Transportation Research Part C: 
Emerging Technologies, vol.133, 2021, 103432.

	25	 Jiang, H.L., Li, Q., Jiang, Y., Shen, G.B., Sinnott, R., Tian, C., and Xu, M.G., 
“When machine learning meets congestion control: A survey and comparison,” 
Computer Networks, vol.192, 108033, 2021, ISSN 1389-1286.

	26	 Dao, MS., Uday Kiran, R., and Zettsu, K., “ Insights for Urban Road Safety: A 
New Fusion-3DCNN-PFP Model to Anticipate Future Congestion from Urban 
Sensing Data,” Kiran, R.U., Fournier-Viger, P., Luna, J.M., Lin, J.CW., Mondal, 
A. (eds), Periodic Pattern Mining, Springer, 2021.

Minh-Son DAO  （ダオ ミン ソン）
Senior Researcher,
Big Data Integration Center, 
Universal Communication Research Institute
Ph.D.
Information Technology  

2022U-04-02.indd　p167　2022/12/08/ 木 00:35:50

167

4-2　マルチモーダルやクロスモーダル AI によるスマートなデータ分析﻿


