
 	 Introduction

Grasping the electromagnetic field (EMF) exposure 
level in real living scenarios is a key step towards ensuring 
environmental and occupational health. Financially sup-
ported by the Ministry of Internal Affairs and 
Communications (MIC), as part of our monitoring project, 
we have conducted a series of measurements [1][2] for that 
purpose. Currently, fifth-generation (5G) wireless com-
munication is paving its way under the promise of provid-
ing society with unprecedented services [3] including 
enhanced mobile broadband (eMBB), ultrareliable low-la-
tency communication (URLLC), and massive machine-type 
communication (mMTC). To that end, 5G, for the first 
time in the history of cellular communications, is deployed 

at two frequency bands including frequency range 1 (FR1: 
sub-6GHz) and FR2 (sub-millimeter-wave or millimeter-
wave band) and employs advanced techniques in the 
physical layer including beamforming and massive multiple 
input multiple output (mMIMO). Beamforming [4] refers 
to generating a radiating beam that points to a target user 
at a specific location with respect to the base station (BS) 
in order to largely mitigate the interference between users 
and overcome severe radio-wave propagation path loss. 
mMIMO [5] denotes large-scale MIMO techniques to 
significantly improve the capacity and throughput of the 
system. All these certainly strengthen the necessity of 
grasping the EMF exposure level from 5G systems, espe-
cially 5G FR2 systems that employ sub-millimeter-waves or 
millimeter-waves. Therefore, many on-site measurements 
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第 5 世代（5G）携帯電話システムでは、従来の携帯電話では使用されていなかった高い周波数
帯の 28 GHz 帯も使用している。したがって、実環境で 28 GHz 帯の電波ばく露レベルを把握する
ことは重要である。そこで、電波ばく露レベルモニタリングプロジェクトの一環として 28 GHz
帯の電波ばく露レベル評価の検討を行った。本稿では、まず 28 GHz 帯のローカル 5G 基地局の電
波ばく露測定について報告する。一方、測定には多大なリソースが必要であり、深層学習、特に
人工ニューラルネットワーク（ANN）を用いることにより、電波ばく露レベルを短時間で推定可能
となることが期待できる。筆者は、電波ばく露レベル分布を正確かつ効率的に予測するための
ANN モデルを提案し有効性の検証を行ったので報告する。

The 5th-generation (5G) mobile phone system uses the 28 GHz band frequency spectrum that 
has never before been used in conventional cellular phone systems. Therefore, it is important to 
understand the electromagnetic field (EMF) exposure level in the 28 GHz band resulting from the 
system in real-world environments. As part of the research project of Acquisition, Accumulation, and 
Applications of EMF Exposure Monitoring Data, the EMF exposure level in 28 GHz band was 
evaluated. This paper first discusses the EMF exposure measurement of 28-GHz-band local 5G 
(L5G) base stations. On the other hand, significant resources are required for these measurements, 
and by using deep learning techniques, particularly artificial neural networks (ANNs), EMF exposure 
levels are expected to be estimated efficiently. The author thus has proposed an ANN model for 
predicting the EMF exposure level distribution accurately and efficiently and reports on its effective-
ness.
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near 28-GHz-band 5G FR2 BSs have been conducted by 
research groups from all over the world [6]–[11]. Our 
measurement results are summarized in Section 2. On the 
other hand, the many measurements that have been con-
ducted motivate the research society to explore possible 
approaches to efficiently predict the EMF exposure level to 
overcome the heavy resource consumption of performing 
on-site measurements. The EMF exposure level is fully 
dependent on the environment itself, including the geom-
etry, material, and electromagnetic (EM) source. With 
advanced numerical approaches (e.g., ray tracing [12], finite 
difference time domain (FDTD) [13], etc.), one can accu-
rately obtain the EMF exposure level of the scenario under 
test. However, it is still inefficient, as the computational 
time could be hours for a large-scale scenario. As an im-
portant branch of machine learning and deep learning, 
artificial neural networks (ANNs) have attracted consider-
able attention in recent years and have achieved tremendous 
success in many domains such as physics, biochemistry, 
and social sciences [14]–[15]. With an appropriate network 
architecture, an ANN model can not only accurately cap-
ture the general pattern hiding within the training data but 
also be generalized to new data that have never been “seen”. 

The most appealing feature is that the model can effi-
ciently yield prediction results once it is trained, usually 
much faster than conventional numerical approaches. 
Therefore, with the final goal of generalizing to 28-GHz-
band 5G systems in mind, the author has preliminarily 
developed an ANN model for predicting the EMF exposure 
level resulting from a dipole antenna operating at 28 GHz. 
This is discussed in Section 3. EMF exposure monitoring 
and machine learning will be inseparable in the future, 
giving rise to a new branch of research. The future prospect 
is discussed in Section 4.

	 EMF Exposure Monitoring of 28-GHz- 
	 Band 5G Systems [16]�

2.1	 Monitoring approach
On-site measurements were conducted in the vicinity 

of a 28-GHz-band local 5G (L5G) BS deployed on the 
campus of Tokyo Metropolitan University in Tokyo, Japan. 
Here, L5G [17] is a 5G system unique to Japan and is 
specially designed for a local area such as a university or 
a factory. The information of the BS is summarized in 
Table 1. Figure 1 shows the measurement site. The BS is 
deployed on the roof of a research building at a height of 
around 25 meters from the ground and is facing the open 
area in front of the building. A receiving antenna is placed 
at a distance of around 35 meters away from the BS and is 
connected to a portable spectrum analyzer (Anritsu 
MS2090A) to measure the strength of the electric field 
(E-field) resulting from the BS. The antenna height is 1.5 

2

able T 1　BS information (non-standalone)

Frequency
28.2 – 28.3 GHz

(bandwidth: 100 MHz)

Subcarrier spacing 120 kHz

Number of synchronization beams 64

able T 2　Configurations of measurement sets

Measurement Set Antenna
Smartphone position and distance both 

relative to the antenna
Set-1 Horn1 (gain: 14.4 dBi) Back (0.5 m)
Set-2 Omni2 (gain: 1.7 dBi) Back (0.5 m)
Set-3 Omni2 (gain: 1.7 dBi) Back (2.0 m)

1Horn: DRH50 (RFspin)
2Omni: 01S1165-00 (Waka Manufacturing)

able T 3　Traffic condition for every sub-measurement

Name Traffic condition Data rate [Mbps]
Power off The smartphone is powered off -
Power on The smartphone is powered on but without data traffic (no traffic) -

iPerf3-DL The smartphone is continuously running the iPerf3* service in the 
download direction

500 (max)

iPerf3-UL The smartphone is continuously running the iPerf3* service in the 
upload direction

20–40

*iPerf3: a tool for generating synthetic traffic between the smartphone and the BS.
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meters from the ground. A 5G smartphone is placed in the 
vicinity of the receiving antenna to ensure the radiating 
beam of the BS points in the direction of the receiving 
antenna. There are three sets of measurements in different 
configurations, as listed in Table 2. The smartphone is 
placed behind the antenna for all the measurement sets. 
The smartphone, once powered on, will always have some 
transmitted power and thus could affect the measurement 
results. On the one hand, as the horn antenna has a direc-
tional radiation pattern, such an effect is easily blocked. On 
the other hand, for measurement sets using the omni an-
tenna (Sets 2 and 3), different distances between the 
smartphone and the antenna are adopted to investigate this 
effect. In addition, there are four sub-measurements with 

each one having a different data traffic condition for each 
measurement set. These data traffic conditions are listed in 
Table 3. For every sub-measurement, the measurement 
time is 1 min. The settings of the spectrum analyzer are 
summarized in Table 4.

2.2	 Monitoring results
Figures 2 (a) and (b) depict the root mean square 

(RMS) and maximum (both over 1 min) E-field strengths 
for every traffic condition in every measurement set, re-
spectively. For each measurement set, the maximum values 
show little difference between Power on, iPerf3-DL, and 
iPerf3-UL cases. The RMS E-field strength differences be-
tween the iPerf3-DL case and the Power on case are about 
24 dB, 19 dB, and 24 dB for Set-1, Set-2, and Set-3, respec-
tively. For all measurement sets, the RMS E-field strengths 
follow the same trend of iPerf3-DL > iPerf3-UL > Power 
on > Power off.

 Figures 3 (a), (b), and (c) depict the cumulative dis-
tribution functions (CDFs) of the instantaneous E-field 
values for every measurement set, respectively. For all the 
iPerf3-DL cases shown in Fig. 3, the E-field strengths that 
correspond to the rapid increases (blue dashed lines) are 
almost the same, indicating that the E-field strengths 
purely resulting from the BS are the same. However, there 
is a gradient-changing region, as marked in Fig. 3 (b). This 
is caused by the smartphone itself. It is evident that the BS 
is not continuously transmitting power during the entire 
measurement duration of iPerf3-UL cases since a significant 
part of the E-field strength data for this traffic condition is 
less than the noise threshold marked in Fig. 3 (≈ 60 
dBμV/m for Set-1 and 70 dBμV/m for Set-2 and Set-3). 
Note that the noise thresholds are different since the anten-
nas have different gains.

able T 4　Spectrum analyzer (Anritsu MS2090A) settings

Frequency range 28.2 – 28.3 GHz

Resolution bandwidth (RBW) 1 MHz

Video bandwidth (VBW) 0.01 MHz

Points 101

Sweep time ≈ 6 ms

ig. F 1　Measurement site

ig. F 2　(a) RMS E-field and (b) maximum E-field strength results over 1 minute

(a) (b)
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	 Applications of Deep Learning  
	 Techniques in the Field of EMF  
	 Exposure Monitoring [18]–[19]�

3.1	 Architecture and model
The existing monitoring approaches are usually based 

on on-site measurements and thus suffer from heavy re-
source consumption. Aiming at solving this problem, the 
author has developed a machine learning model for ac-
curately and efficiently predicting the EMF exposure level. 
The purpose of a machine learning model is to capture the 
underlying general pattern, in this case, the physics of radio-

wave propagations, through learning from the training 
data. To this end, the input needs to be represented in an 
appropriate manner so that all the features hidden inside 
the training data are covered. EMF exposure levels are 
fully dependent on the environment and the EM source. 
The authors innovatively represent the environment to-
gether with the EM source as a graph, and creatively em-
ploys graph neural networks [15][20]. A graph is composed 
of nodes and edges that connect between nodes and can 
be well organized to include all the features including the 
geometry and materials of the environment and the infor-
mation of the EM source. The overall prediction model is 

3

ig. F 4　Prediction model at the top level

ig. F 3　CDFs for (a) Set-1, (b) Set-2, and (c) Set-3

194　　　情報通信研究機構研究報告 Vol.69 No.1 （2023）

2023E-05-03.indd　p194　2023/09/27/ 水 17:35:02

5　電波ばく露レベルモニタリング



shown in Fig. 4. A given 3-D geometry of the environment 
including the transmitter (Tx) is first modeled to its graph 
representation in Stage 1 (Graph Modeling). This graph 
representation is then used as the input to a graph neural 
network (GNN) (Stage 2), and is encoded as a vector 
representation with all the information (environment and 
EM source) being implicitly included. Finally, the E-field 
distribution is generated using a predictor network (Stage 
3) with the vector representation as input. Here, the predic-
tor is a fully connected neural network.

3.2	 Results
Focusing on indoor environments, the author ran-

domly designed one hundred different indoor floorplans 
(some of the floorplans are shown in Fig. 5) and split them 
into a training subset (90 floorplans) and a validation 
subset (10 floorplans). Here, the training subset was used 
to guide model training, whereas the validation subset was 
used to test the performance of the trained model. For 
every floorplan, a dipole antenna operating at 28 GHz was 
sequentially placed at 180 positions uniformly distributed 

across that floorplan. Wireless InSite (REMCOM Inc., 
USA) software was used to calculate the RMS E-field 
strength distribution, and these data were used as ground 
truths. The evaluation metric used for quantifying the 
performance of the prediction model was the mean abso-
lute error (MAE) in dB. The formula is 

MAE �dB� � �
�∙� ∙ ∑ ∑ |20 ∙ log𝑝𝑝�� � 20 ∙ log 𝑟𝑟��|�������� ,

� (1)
where i is the index of floorplans in either the training 
subset or the validation subset, k is the index of observation 
points within a floorplan, pik is the predicted value, and rik 
is the true value. The scattering plots of the training and 
validation subsets are shown in Figs. 6 (a) and (b), respec-
tively. MAEs of 3.2 dB and 4.2 dB are achieved for the 
training subset and validation subset, respectively. These 
results are quite good compared with the results of the 
conventional empirical propagation models [21] that had 
an error of more than 10 dB. As shown in Fig. 6 (b), the 
prediction is uniformly distributed along the ideal line, 
implying that the model well predicts the E-field distribu-

ig. F 6　Scattering plots for the (a) training subset and (b) validation subset

ig. F 5　Some floorplans in the dataset
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tion in the floorplans of the validation subset. In other 
words, the model can “see” new floorplans that were never 
used during the model training process. Figures 7 (a) and 
(b) respectively depict the true and predicted E-field dis-
tributions in a selected data sample from the validation 
subset for comparison purposes. It is evident that the 
prediction model provides excellent results in regions with 
high strength values including line-of-sight regions and 
non-line-of-sight regions that are close to the Tx antenna. 
Meanwhile, the prediction model provides the results 
within 1 s, which is much faster than simulations that re-
quire 1.5 min with the option of GPU acceleration enabled.

	 Conclusion and Future Prospects

In this research, the author measured the EMF exposure 
level from a 28-GHz-band local 5G BS deployed on the 
campus of Tokyo Metropolitan University in Tokyo, Japan. 
It was found that the maximum E-field strength is not 
dependent on the traffic condition when the smartphone 
is powered on. Meanwhile, there is an increase of around 
20 dB of the RMS E-field strength in cases with data traf-
fic compared with cases of no traffic. 5G is paving its way, 
and many commercial BSs, including underground ones, 
will be newly deployed. The authors are currently investi-
gating commercial 5G BSs. The author also developed an 
EMF exposure prediction model based on graph neural 
networks. The model can accurately and efficiently predict 

the EMF exposure level distribution in an indoor environ-
ment that is beyond the training subset. The author will 
explore the possibility of extending the model to outdoor 
scenarios in the future. In addition, the combining of 
measured data is also a promising direction for future 
exploration.
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