Introduction

Grasping the electromagnetic field (EMF) exposure level in real living scenarios is a key step towards ensuring environmental and occupational health. Financially supported by the Ministry of Internal Affairs and Communications (MIC), as part of our monitoring project, we have conducted a series of measurements [1][2] for that purpose. Currently, fifth-generation (5G) wireless communication is paving its way under the promise of providing society with unprecedented services [3] including enhanced mobile broadband (eMBB), ultrareliable low-latency communication (URLLC), and massive machine-type communication (mMTC). To that end, 5G, for the first time in the history of cellular communications, is deployed at two frequency bands including frequency range 1 (FR1: sub-6GHz) and FR2 (sub-millimeter-wave or millimeter-wave band) and employs advanced techniques in the physical layer including beamforming and massive multiple input multiple output (mMIMO). Beamforming [4] refers to generating a radiating beam that points to a target user at a specific location with respect to the base station (BS) in order to largely mitigate the interference between users and overcome severe radio-wave propagation path loss. mMIMO [5] denotes large-scale MIMO techniques to significantly improve the capacity and throughput of the system. All these certainly strengthen the necessity of grasping the EMF exposure level from 5G systems, especially 5G FR2 systems that employ sub-millimeter-waves or millimeter-waves. Therefore, many on-site measurements...
near 28-GHz-band 5G FR2 BSs have been conducted by research groups from all over the world [6]–[11]. Our measurement results are summarized in Section 2. On the other hand, the many measurements that have been conducted motivate the research society to explore possible approaches to efficiently predict the EMF exposure level to overcome the heavy resource consumption of performing on-site measurements. The EMF exposure level is fully dependent on the environment itself, including the geometry, material, and electromagnetic (EM) source. With advanced numerical approaches (e.g., ray tracing [12], finite difference time domain (FDTD) [13], etc.), one can accurately obtain the EMF exposure level of the scenario under test. However, it is still inefficient, as the computational time could be hours for a large-scale scenario. As an important branch of machine learning and deep learning, artificial neural networks (ANNs) have attracted considerable attention in recent years and have achieved tremendous success in many domains such as physics, biochemistry, and social sciences [14]–[15]. With an appropriate network architecture, an ANN model can not only accurately capture the general pattern hiding within the training data but also be generalized to new data that have never been "seen". The most appealing feature is that the model can efficiently yield prediction results once it is trained, usually much faster than conventional numerical approaches. Therefore, with the final goal of generalizing to 28-GHz-band 5G systems in mind, the author has preliminarily developed an ANN model for predicting the EMF exposure level resulting from a dipole antenna operating at 28 GHz. This is discussed in Section 3. EMF exposure monitoring and machine learning will be inseparable in the future, giving rise to a new branch of research. The future prospect is discussed in Section 4.

2 EMF Exposure Monitoring of 28-GHz-Band 5G Systems [16]

2.1 Monitoring approach

On-site measurements were conducted in the vicinity of a 28-GHz-band local 5G (L5G) BS deployed on the campus of Tokyo Metropolitan University in Tokyo, Japan. Here, L5G [17] is a 5G system unique to Japan and is specially designed for a local area such as a university or a factory. The information of the BS is summarized in Table 1. Figure 1 shows the measurement site. The BS is deployed on the roof of a research building at a height of around 25 meters from the ground and is facing the open area in front of the building. A receiving antenna is placed at a distance of around 35 meters away from the BS and is connected to a portable spectrum analyzer (Anritsu MS2090A) to measure the strength of the electric field (E-field) resulting from the BS. The antenna height is 1.5

Table 1 BS information (non-standalone)

<table>
<thead>
<tr>
<th>Frequency (bandwidth: 100 MHz)</th>
<th>28.2 – 28.3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcarrier spacing</td>
<td>120 kHz</td>
</tr>
<tr>
<td>Number of synchronization beams</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 2 Configurations of measurement sets

<table>
<thead>
<tr>
<th>Measurement Set</th>
<th>Antenna</th>
<th>Smartphone position and distance both relative to the antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set-1</td>
<td>Horn1</td>
<td>Back (0.5 m)</td>
</tr>
<tr>
<td>Set-2</td>
<td>Omni2</td>
<td>Back (0.5 m)</td>
</tr>
<tr>
<td>Set-3</td>
<td>Omni2</td>
<td>Back (2.0 m)</td>
</tr>
</tbody>
</table>

1Horn: DRH50 (RFspin)
2Omni: 01S1165-00 (Waka Manufacturing)

Table 3 Traffic condition for every sub-measurement

<table>
<thead>
<tr>
<th>Name</th>
<th>Traffic condition</th>
<th>Data rate [Mbps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power off</td>
<td>The smartphone is powered off</td>
<td>-</td>
</tr>
<tr>
<td>Power on</td>
<td>The smartphone is powered on but without data traffic (no traffic)</td>
<td>-</td>
</tr>
<tr>
<td>iPerf3-DL</td>
<td>The smartphone is continuously running the iPerf3* service in the download direction</td>
<td>500 (max)</td>
</tr>
<tr>
<td>iPerf3-UL</td>
<td>The smartphone is continuously running the iPerf3* service in the upload direction</td>
<td>20–40</td>
</tr>
</tbody>
</table>

iPerf3: a tool for generating synthetic traffic between the smartphone and the BS.
meters from the ground. A 5G smartphone is placed in the vicinity of the receiving antenna to ensure the radiating beam of the BS points in the direction of the receiving antenna. There are three sets of measurements in different configurations, as listed in Table 2. The smartphone is placed behind the antenna for all the measurement sets. The smartphone, once powered on, will always have some transmitted power and thus could affect the measurement results. On the one hand, as the horn antenna has a directional radiation pattern, such an effect is easily blocked. On the other hand, for measurement sets using the omni antenna (Sets 2 and 3), different distances between the smartphone and the antenna are adopted to investigate this effect. In addition, there are four sub-measurements with each one having a different data traffic condition for each measurement set. These data traffic conditions are listed in Table 3. For every sub-measurement, the measurement time is 1 min. The settings of the spectrum analyzer are summarized in Table 4.

2.2 Monitoring results

Figures 2 (a) and (b) depict the root mean square (RMS) and maximum (both over 1 min) E-field strengths for every traffic condition in every measurement set, respectively. For each measurement set, the maximum values show little difference between Power on, iPerf3-DL, and iPerf3-UL cases. The RMS E-field strength differences between the iPerf3-DL case and the Power on case are about 24 dB, 19 dB, and 24 dB for Set-1, Set-2, and Set-3, respectively. For all measurement sets, the RMS E-field strengths follow the same trend of iPerf3-DL > iPerf3-UL > Power on > Power off.

Figures 3 (a), (b), and (c) depict the cumulative distribution functions (CDFs) of the instantaneous E-field values for every measurement set, respectively. For all the iPerf3-DL cases shown in Fig. 3, the E-field strengths that correspond to the rapid increases (blue dashed lines) are almost the same, indicating that the E-field strengths purely resulting from the BS are the same. However, there is a gradient-changing region, as marked in Fig. 3 (b). This is caused by the smartphone itself. It is evident that the BS is not continuously transmitting power during the entire measurement duration of iPerf3-UL cases since a significant part of the E-field strength data for this traffic condition is less than the noise threshold marked in Fig. 3 (≈ 60 dBμV/m for Set-1 and 70 dBμV/m for Set-2 and Set-3). Note that the noise thresholds are different since the antennas have different gains.

Table 4 Spectrum analyzer (Anritsu MS2090A) settings

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>28.2 – 28.3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution bandwidth (RBW)</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Video bandwidth (VBW)</td>
<td>0.01 MHz</td>
</tr>
<tr>
<td>Points</td>
<td>101</td>
</tr>
<tr>
<td>Sweep time</td>
<td>≈ 6 ms</td>
</tr>
</tbody>
</table>

Fig. 1 Measurement site

Fig. 2 (a) RMS E-field and (b) maximum E-field strength results over 1 minute
Applications of Deep Learning Techniques in the Field of EMF Exposure Monitoring [18]–[19]

3.1 Architecture and model

The existing monitoring approaches are usually based on on-site measurements and thus suffer from heavy resource consumption. Aiming at solving this problem, the author has developed a machine learning model for accurately and efficiently predicting the EMF exposure level. The purpose of a machine learning model is to capture the underlying general pattern, in this case, the physics of radio-wave propagations, through learning from the training data. To this end, the input needs to be represented in an appropriate manner so that all the features hidden inside the training data are covered. EMF exposure levels are fully dependent on the environment and the EM source. The authors innovatively represent the environment together with the EM source as a graph, and creatively employs graph neural networks [15][20]. A graph is composed of nodes and edges that connect between nodes and can be well organized to include all the features including the geometry and materials of the environment and the information of the EM source. The overall prediction model is...
shown in Fig. 4. A given 3-D geometry of the environment including the transmitter (Tx) is first modeled to its graph representation in Stage 1 (Graph Modeling). This graph representation is then used as the input to a graph neural network (GNN) (Stage 2), and is encoded as a vector representation with all the information (environment and EM source) being implicitly included. Finally, the E-field distribution is generated using a predictor network (Stage 3) with the vector representation as input. Here, the predictor is a fully connected neural network.

3.2 Results

Focusing on indoor environments, the author randomly designed one hundred different indoor floorplans (some of the floorplans are shown in Fig. 5) and split them into a training subset (90 floorplans) and a validation subset (10 floorplans). Here, the training subset was used to guide model training, whereas the validation subset was used to test the performance of the trained model. For every floorplan, a dipole antenna operating at 28 GHz was sequentially placed at 180 positions uniformly distributed across that floorplan. Wireless InSite (REMCOM Inc., USA) software was used to calculate the RMS E-field strength distribution, and these data were used as ground truths. The evaluation metric used for quantifying the performance of the prediction model was the mean absolute error (MAE) in dB. The formula is

\[
\text{MAE [dB]} = \frac{1}{A \cdot R} \cdot \sum_{i=1}^{A} \sum_{k=1}^{R} |20 \cdot \log p_{ik} - 20 \cdot \log r_{ik}|,
\]

where \(i\) is the index of floorplans in either the training subset or the validation subset, \(k\) is the index of observation points within a floorplan, \(p_{ik}\) is the predicted value, and \(r_{ik}\) is the true value. The scattering plots of the training and validation subsets are shown in Figs. 6 (a) and (b), respectively. MAEs of 3.2 dB and 4.2 dB are achieved for the training subset and validation subset, respectively. These results are quite good compared with the results of the conventional empirical propagation models [21] that had an error of more than 10 dB. As shown in Fig. 6 (b), the prediction is uniformly distributed along the ideal line, implying that the model well predicts the E-field distribu-
tion in the floorplans of the validation subset. In other words, the model can “see” new floorplans that were never used during the model training process. Figures 7 (a) and (b) respectively depict the true and predicted E-field distributions in a selected data sample from the validation subset for comparison purposes. It is evident that the prediction model provides excellent results in regions with high strength values including line-of-sight regions and non-line-of-sight regions that are close to the Tx antenna. Meanwhile, the prediction model provides the results within 1 s, which is much faster than simulations that require 1.5 min with the option of GPU acceleration enabled.

Conclusion and Future Prospects

In this research, the author measured the EMF exposure level from a 28-GHz-band local 5G BS deployed on the campus of Tokyo Metropolitan University in Tokyo, Japan. It was found that the maximum E-field strength is not dependent on the traffic condition when the smartphone is powered on. Meanwhile, there is an increase of around 20 dB of the RMS E-field strength in cases with data traffic compared with cases of no traffic. 5G is paving its way, and many commercial BSs, including underground ones, will be newly deployed. The authors are currently investigating commercial 5G BSs. The author also developed an EMF exposure prediction model based on graph neural networks. The model can accurately and efficiently predict the EMF exposure level distribution in an indoor environment that is beyond the training subset. The author will explore the possibility of extending the model to outdoor scenarios in the future. In addition, the combining of measured data is also a promising direction for future exploration.

Acknowledgment

The author appreciates the support from the Ministry of Internal Affairs and Communications, Japan (JPMI10001) and the Tokyo Metropolitan University (TMU) local 5G research funding. The author thanks the support from Mr. Tsuchiya Naoto and Prof. Yukihisa Suzuki from TMU, and Mr. Kazuhiro Tobita from our research group.

References

3. MIC, https://en.go5g.go.jp/.