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5-3 EMF Exposure Monitoring of 28-GHz-Band 5G Systems and Applications of Deep
Learning Techniques in the Field of EMF Exposure Monitoring
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The 5th-generation (5G) mobile phone system uses the 28 GHz band frequency spectrum that
has never before been used in conventional cellular phone systems. Therefore, it is important to
understand the electromagnetic field (EMF) exposure level in the 28 GHz band resulting from the
system in real-world environments. As part of the research project of Acquisition, Accumulation, and
Applications of EMF Exposure Monitoring Data, the EMF exposure level in 28 GHz band was
evaluated. This paper first discusses the EMF exposure measurement of 28-GHz-band local 5G
(L5G) base stations. On the other hand, significant resources are required for these measurements,
and by using deep learning techniques, particularly artificial neural networks (ANNs), EMF exposure
levels are expected to be estimated efficiently. The author thus has proposed an ANN model for
predicting the EMF exposure level distribution accurately and efficiently and reports on its effective-

ness.

Q Introduction

at two frequency bands including frequency range 1 (FR1:

sub-6GHz) and FR2 (sub-millimeter-wave or millimeter-

Grasping the electromagnetic field (EMF) exposure
level in real living scenarios is a key step towards ensuring
environmental and occupational health. Financially sup-
ported by the Ministry of Internal Affairs and
Communications (MIC), as part of our monitoring project,
we have conducted a series of measurements [1][2] for that
purpose. Currently, fifth-generation (5G) wireless com-
munication is paving its way under the promise of provid-
ing society with unprecedented services [3] including
enhanced mobile broadband (eMBB), ultrareliable low-la-
tency communication (URLLC), and massive machine-type
communication (mMTC). To that end, 5G, for the first

time in the history of cellular communications, is deployed

wave band) and employs advanced techniques in the
physical layer including beamforming and massive multiple
input multiple output (mMIMO). Beamforming [4] refers
to generating a radiating beam that points to a target user
at a specific location with respect to the base station (BS)
in order to largely mitigate the interference between users
and overcome severe radio-wave propagation path loss.
mMIMO [5] denotes large-scale MIMO techniques to
significantly improve the capacity and throughput of the
system. All these certainly strengthen the necessity of
grasping the EMF exposure level from 5G systems, espe-
cially 5G FR2 systems that employ sub-millimeter-waves or

millimeter-waves. Therefore, many on-site measurements
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near 28-GHz-band 5G FR2 BSs have been conducted by
research groups from all over the world [6]-[11]. Our
measurement results are summarized in Section 2. On the
other hand, the many measurements that have been con-
ducted motivate the research society to explore possible
approaches to efficiently predict the EMF exposure level to
overcome the heavy resource consumption of performing
on-site measurements. The EMF exposure level is fully
dependent on the environment itself, including the geom-
etry, material, and electromagnetic (EM) source. With
advanced numerical approaches (e.g., ray tracing [12], finite
difference time domain (FDTD) [13], etc.), one can accu-
rately obtain the EMF exposure level of the scenario under
test. However, it is still inefficient, as the computational
time could be hours for a large-scale scenario. As an im-
portant branch of machine learning and deep learning,
artificial neural networks (ANNs) have attracted consider-
able attention in recent years and have achieved tremendous
success in many domains such as physics, biochemistry,
and social sciences [14]-[15]. With an appropriate network
architecture, an ANN model can not only accurately cap-
ture the general pattern hiding within the training data but

also be generalized to new data that have never been “seen’.

Table 1 BS information (non-standalone)

28.2 - 28.3 GHz

F
reaneney (bandwidth: 100 MHz)
Subcarrier spacing 120 kHz
Number of synchronization beams 64

The most appealing feature is that the model can effi-
ciently yield prediction results once it is trained, usually
much faster than conventional numerical approaches.
Therefore, with the final goal of generalizing to 28-GHz-
band 5G systems in mind, the author has preliminarily
developed an ANN model for predicting the EMF exposure
level resulting from a dipole antenna operating at 28 GHz.
This is discussed in Section 3. EMF exposure monitoring
and machine learning will be inseparable in the future,
giving rise to a new branch of research. The future prospect

is discussed in Section 4.

EMF Exposure Monitoring of 28-GHz-
Band 5G Systems [16]

2.1 Monitoring approach

On-site measurements were conducted in the vicinity
of a 28-GHz-band local 5G (L5G) BS deployed on the
campus of Tokyo Metropolitan University in Tokyo, Japan.
Here, L5G [17] is a 5G system unique to Japan and is
specially designed for a local area such as a university or
a factory. The information of the BS is summarized in
Table 1. Figure 1 shows the measurement site. The BS is
deployed on the roof of a research building at a height of
around 25 meters from the ground and is facing the open
area in front of the building. A receiving antenna is placed
at a distance of around 35 meters away from the BS and is
connected to a portable spectrum analyzer (Anritsu
MS2090A) to measure the strength of the electric field
(E-field) resulting from the BS. The antenna height is 1.5

Table 2 Configurations of measurement sets

Smartphone position and distance both
Measurement Set Antenna N
relative to the antenna
Set-1 Horn' (gain: 14.4 dBi) Back (0.5 m)
Set-2 Omni? (gain: 1.7 dBi) Back (0.5 m)
Set-3 Omni? (gain: 1.7 dBi) Back (2.0 m)

'Horn: DRH50 (RFspin)
20mni: 0151165-00 (Waka Manufacturing)

Table 3 Traffic condition for every sub-measurement

Name Traffic condition Data rate [Mbps]
Power off The smartphone is powered off -
Power on The smartphone is powered on but without data traffic (no traffic) -
{Perf3-DL The smartphone is continuously rur.mmg the iPerf3* service in the 500 (max)
download direction
{Perf3-UL The smartphone is continuously running the iPerf3* service in the 20-40

upload direction

*iPerf3: a tool for generating synthetic traffic between the smartphone and the BS.
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meters from the ground. A 5G smartphone is placed in the
vicinity of the receiving antenna to ensure the radiating
beam of the BS points in the direction of the receiving
antenna. There are three sets of measurements in different
configurations, as listed in Table 2. The smartphone is
placed behind the antenna for all the measurement sets.
The smartphone, once powered on, will always have some
transmitted power and thus could affect the measurement
results. On the one hand, as the horn antenna has a direc-
tional radiation pattern, such an effect is easily blocked. On
the other hand, for measurement sets using the omni an-
tenna (Sets 2 and 3), different distances between the
smartphone and the antenna are adopted to investigate this

effect. In addition, there are four sub-measurements with

Table 4 Spectrum analyzer (Anritsu MS2090A) settings

Frequency range 28.2 - 28.3 GHz
Resolution bandwidth (RBW) 1 MHz
Video bandwidth (VBW) 0.01 MHz
Points 101
Sweep time = 6 ms

o
e T SR

Receiving [
= antenna e}

Fig. 1 Measurement site
120
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£ 80
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(a)
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each one having a different data traffic condition for each
measurement set. These data traffic conditions are listed in
Table 3. For every sub-measurement, the measurement
time is 1 min. The settings of the spectrum analyzer are

summarized in Table 4.

2.2 Monitoring results

Figures 2 (a) and (b) depict the root mean square
(RMS) and maximum (both over 1 min) E-field strengths
for every traffic condition in every measurement set, re-
spectively. For each measurement set, the maximum values
show little difference between Power on, iPerf3-DL, and
iPerf3-UL cases. The RMS E-field strength differences be-
tween the iPerf3-DL case and the Power on case are about
24 dB, 19 dB, and 24 dB for Set-1, Set-2, and Set-3, respec-
tively. For all measurement sets, the RMS E-field strengths
follow the same trend of iPerf3-DL > iPerf3-UL > Power
on > Power off.

Figures 3 (a), (b), and (c) depict the cumulative dis-
tribution functions (CDFs) of the instantaneous E-field
values for every measurement set, respectively. For all the
iPerf3-DL cases shown in Fig. 3, the E-field strengths that
correspond to the rapid increases (blue dashed lines) are
almost the same, indicating that the E-field strengths
purely resulting from the BS are the same. However, there
is a gradient-changing region, as marked in Fig. 3 (b). This
is caused by the smartphone itself. It is evident that the BS
is not continuously transmitting power during the entire
measurement duration of iPerf3-UL cases since a significant
part of the E-field strength data for this traffic condition is
less than the noise threshold marked in Fig. 3 (= 60
dBuV/m for Set-1 and 70 dBuV/m for Set-2 and Set-3).
Note that the noise thresholds are different since the anten-

nas have different gains.

iPerf3-DL iPerf3-UL
Traffic condition

mSctl mSet2)
m Set3

80
60
40
20

0

Power off

Power on

(b)

Fig. 2 (a) RMS E-field and (b) maximum E-field strength results over 1 minute
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Fig. 4 Prediction model at the top level

Applications of Deep Learning
Techniques in the Field of EMF
Exposure Monitoring [18]-[19]

3.1 Architecture and model

The existing monitoring approaches are usually based
on on-site measurements and thus suffer from heavy re-
source consumption. Aiming at solving this problem, the
author has developed a machine learning model for ac-
curately and efficiently predicting the EMF exposure level.
The purpose of a machine learning model is to capture the

underlying general pattern, in this case, the physics of radio-
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wave propagations, through learning from the training
data. To this end, the input needs to be represented in an
appropriate manner so that all the features hidden inside
the training data are covered. EMF exposure levels are
fully dependent on the environment and the EM source.
The authors innovatively represent the environment to-
gether with the EM source as a graph, and creatively em-
ploys graph neural networks [15][20]. A graph is composed
of nodes and edges that connect between nodes and can
be well organized to include all the features including the
geometry and materials of the environment and the infor-

mation of the EM source. The overall prediction model is
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Fig. 6 Scattering plots for the (a) training subset and (b) validation subset

shown in Fig. 4. A given 3-D geometry of the environment
including the transmitter (Tx) is first modeled to its graph
representation in Stage 1 (Graph Modeling). This graph
representation is then used as the input to a graph neural
network (GNN) (Stage 2), and is encoded as a vector
representation with all the information (environment and
EM source) being implicitly included. Finally, the E-field
distribution is generated using a predictor network (Stage
3) with the vector representation as input. Here, the predic-

tor is a fully connected neural network.

3.2 Results

Focusing on indoor environments, the author ran-
domly designed one hundred different indoor floorplans
(some of the floorplans are shown in Fig. 5) and split them
into a training subset (90 floorplans) and a validation
subset (10 floorplans). Here, the training subset was used
to guide model training, whereas the validation subset was
used to test the performance of the trained model. For
every floorplan, a dipole antenna operating at 28 GHz was

sequentially placed at 180 positions uniformly distributed

across that floorplan. Wireless InSite (REMCOM Inc.,
USA) software was used to calculate the RMS E-field
strength distribution, and these data were used as ground
truths. The evaluation metric used for quantifying the
performance of the prediction model was the mean abso-
lute error (MAE) in dB. The formula is

MAE [dB] = —- %2, %K_,120 - log pyc — 20 - log i,

(1)
where i is the index of floorplans in either the training
subset or the validation subset, k is the index of observation
points within a floorplan, p, is the predicted value, and r,
is the true value. The scattering plots of the training and
validation subsets are shown in Figs. 6 (a) and (b), respec-
tively. MAEs of 3.2 dB and 4.2 dB are achieved for the
training subset and validation subset, respectively. These
results are quite good compared with the results of the
conventional empirical propagation models [21] that had
an error of more than 10 dB. As shown in Fig. 6 (b), the
prediction is uniformly distributed along the ideal line,

implying that the model well predicts the E-field distribu-
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Fig. 7 Ground truth and result of prediction

tion in the floorplans of the validation subset. In other
words, the model can “see” new floorplans that were never
used during the model training process. Figures 7 (a) and
(b) respectively depict the true and predicted E-field dis-
tributions in a selected data sample from the validation
subset for comparison purposes. It is evident that the
prediction model provides excellent results in regions with
high strength values including line-of-sight regions and
non-line-of-sight regions that are close to the Tx antenna.
Meanwhile, the prediction model provides the results
within 1 s, which is much faster than simulations that re-

quire 1.5 min with the option of GPU acceleration enabled.

Q Conclusion and Future Prospects

In this research, the author measured the EMF exposure
level from a 28-GHz-band local 5G BS deployed on the
campus of Tokyo Metropolitan University in Tokyo, Japan.
It was found that the maximum E-field strength is not
dependent on the traffic condition when the smartphone
is powered on. Meanwhile, there is an increase of around
20 dB of the RMS E-field strength in cases with data traf-
fic compared with cases of no traffic. 5G is paving its way,
and many commercial BSs, including underground ones,
will be newly deployed. The authors are currently investi-
gating commercial 5G BSs. The author also developed an
EMF exposure prediction model based on graph neural

networks. The model can accurately and efficiently predict
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the EMF exposure level distribution in an indoor environ-
ment that is beyond the training subset. The author will
explore the possibility of extending the model to outdoor
scenarios in the future. In addition, the combining of
measured data is also a promising direction for future

exploration.
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