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The ATR ISD CyberHuman Project uses humanoid robots to study human behavior and
communication. A current focus is learning from demonstration, where a person communi-
cates a skill by showing it to another person or machine. Machine perception of human
movement, translating actions and goals, and learning from practice are important ingredi-
ents in our approach to learning from demonstration.
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The goal of the ATR ISD CyberHuman
Project is to develop computational models of
human behavior, so that we can support
human-human and human-machine communi-
cation more effectively. In this article, | will
describe some of our work on perception and
generation of human motion. We use
humanoid robots to test our theories and
behavioral algorithms. Using a humanoid
robot as a research tool forces us to deal with
a complex physical apparatus and complex
tasks. Our work excites alot of public interest,
but we have to meet high standards, because
observers expect human level competence
from a machine with a human form.
Humanoid robots have tremendous potential
in society, both to serve humans directly and
to operate in spaces designed for humans. We
envision a future in which humans can explore
remote and/or dangerous experiences by com-
municating with a robot. We expect it will be
easier for humans to interact with and control
robots with human form. We have an opportu-
nity to develop ways to make it easier to pro-
gram behavior in a humanoid robot, and
potentially in other machines and computer
systems as well, based on how we program

behavior in our fellow humans.

We will describe our work with our cur-
rent humanoid robot DB (www.erato.atr.co.
jp/DB/), a hydraulic anthropomorphic robot
with legs, arms, a jointed torso, and a head
(Fig. 1). Severa projects are using this robot
as a test bed, including the Kawato Dynamic
Brain Project, an Exploratory Research For
Advanced Technology (ERATO) project fund-
ed by the Japan Science and Technology
Agency. This robot is unique in the world due
to its human-like form and mechanical capa-
bilities. Many international researchers come
to ATR to work with this robot.

We have already demonstrated several
simple behaviors, including juggling a single
ball by paddling it on a racket, learning a folk
dance by observing a human perform it4;,
robot drumming synchronized to sounds the
robot hears (karaoke drumming)s), juggling 3
balls, performing a Tai Chi exercise in contact
with a humante;, and various oculomotor
behaviorse). We are focusing our research on
learning (especialy learning from demonstra-
tion).

We are interested in how humans and
machines can learn from sensory information
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in order to acquire perceptua and motor skills.
For this reason, we are exploring neural net-
works, statistical learning, and machine learn-
ing algorithms. Learning topics that we inves-
tigate fall into several areas including learning
from demonstration and reinforcement learn-

ing.
1 Learning from Demonstration

A major focus of our work with the
humanoid robot is learning from demonstra-
tion. It typically takes a human a long time to
program one of our anthropomorphic robots to
do atask. How can we reduce the cost of com-
municating with and controlling complex sys-
tems? One way we instruct our fellow human
beings is to show them how to do atask. It is
amazing that such a complex sensory input is
useful for learning. How does the learner
know what is important or irrelevant in the
demonstration? How does the learner infer the
goals of the performer? How does the learner
generalize to different situations? Our hope is
that human-like learning from demonstration
will greatly reduce the cost of programming
complex systems. In addition, we expect
humanoid robots to be asked to perform tasks
that people do, which typically involve
human-like motions which can easily be
demonstrated by a human.

We also believe that |earning from demon-
stration will provide one of the most important
footholds to understand the information
processes of sensori-motor control and learn-
ing in the brain. Humans and many animals do
not just learn a task from scratch by trial and

The humanoid robot juggling 3 balls, using kitchen funnels for hands,

®

error. Rather they extract knowledge about
how to approach a problem from watching
others performing a similar task, and based on
what they already know. From the viewpoint
of computational neuroscience, learning from
demonstration is a highly complex problem
that requires mapping a perceived action that
is given in an external (world) coordinate
frame into a totally different internal frame of
reference to activate motor neurons and subse-
guently muscles. Recent work in behavioral
neuroscience has shown that there are special-
ized neurons (“mirror neurons’) in the frontal
cortex of primates that seem to be the inter-
face between perceived movement and gener-
ated movement, i.e., these neurons fire very
selectively when a particular movement is
shown to the primate, but also when the pri-
mate itself executes the movement. Brain
imaging studies with humans are consistent
with these resullts.

Research on learning from demonstration
offers a tremendous potential for future
autonomous robots, and also for medical and
clinical research. If we can communicate with
machines by showing, our interaction with
machines would become much more natural.
If a machine can understand human move-
ment, it can aso be used in rehabilitation as a
personal trainer that watches a patient and pro-
vides specific new exercises to improve a
motor skill. Finally, the insights into biologi-
cal motor control developed in learning from
demonstration can help to build adaptive pros-
thetic devices that can be taught to improve
the performance of a prosthesis.

One working hypothesis is that a per-
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ceived movement is mapped onto a finite set
of movement primitives that compete for per-
ceived action. Such a process can be formul at-
ed in the framework of competitive learning.
Each movement primitive predicts the out-
come of a perceived movement and tries to
adjust its parameters to achieve an even better
prediction, until a winner is determined. In
preliminary studies with anthropomorphic
robots we have demonstrated the feasibility of
this approach. Nevertheless, many open prob-
lems remain for future research. We are aso
trying to develop theories on how the cerebel-
lum could be involved in learning movement
primitives.

To explore these issues we have imple-
mented learning from demonstration for a
number of tasks, ranging from folk dancing to
various forms of juggling. We have identified
a number of key challenges. The first chal-
lenge is to be able to perceive and understand
what happens during a demonstration. The
second challenge is finding an appropriate
way to translate the behavior into something
the robot can actually do. Although our cur-
rent robot is humanoid, it is not a human. It
has more restrictive joint movement limits, is
weaker, and its maximum speeds are slower
than a human. It has many fewer joints and
ways to move. A third chalenge is that there
are many things that are hard or impossible to
perceive in a demonstration, such as muscle
activations or responses to errors that do not
occur in the demonstration. The robot must fill
in the missing information using learning from
practice. Solving these challenges is greatly
facilitated by having the robot be able to per-
ceive the teacher’'s goal.

2 Perceiving Human Movement

In order to understand a demonstration of
a task, the robot must be able to see what is
happening. We have focused on the perception
of human movement. We are exploiting our
knowledge of how humans generate motion to
inform our perception algorithms. For exam-
ple, one theory of human movement is that we

move in such a way as to minimize how fast
muscle forces changers). This theory about
movement generation can be used to select the
most likely interpretation of ambiguous senso-
ry inputc71.

Our first thought was to borrow motion
capture techniques from the movie and video
game industry. However, we found that the
requirements to actually control a physical
device such as the humanoid robot, rather than
draw a picture, required substantial modifica-
tions of these techniques. We have experi-
mented with optical systems that track mark-
ers, systems where the teacher strapped on
measurement devices, and vision-based sys-
tems with no special markers.

The organizing principle for our percep-
tion algorithms is that they should be able to
recreate or predict the measured images based
on the recovered information. In addition, the
movement recovery is made more reliable by
adding what are known as “regularization”
terms to be minimized. These terms help
resolve ambiguities in the sensor data. For
example, one regularization term penalizes
high rates of estimated muscle force change.
We also process a large time range of inputs
simultaneously rather than processing images
or measurements taken at a single time, so we
can apply regularization operators across time
as well and easily handle occlusion and noise.
Thus, perception becomes an optimization
process which tries to find the underlying
movement or “motor program” that predicts
the measured data and deviates from what we
know about human movement the least.

In order to deal with systems as complex
as the human body and the humanoid robot,
we had to use a representation with adaptive
resolution. We chose B-spline wavelets.
Wavelets are removed when their coefficients
are small, and added when where there islarge
prediction error. We have also developed large
scale optimization techniques that handle the
sparse representations we typically find in the
observed data. These optimization techniques
are also designed to be reliable and robust,
using second order optimization with trust
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Perceiving human mofion. The fop row of frames show a human walking, and the boftom
row of frames show how well our perception is fracking the motion by overlaying a graphi-
cal model where the perception system believes the human body parts fo be.

regions and also using ideas from robust sta-
tistics allowing us to take into account only
the relevant data while ignoring background
information and noise which should not influ-
ence the interpretation of the perceived
actions. Fig. 2 shows an example of our per-
ception algorithms applied to frames from a
high speed video camera.

3 Translating Movement and
Inferring Goals

We used an Okinawan folk dance “Kacha
shi” as one test case for learning from demon-
strationr4]. We captured movements of a
skilled performer. After using the perception
techniques described above, we found that the
motions of the teacher exceeded the joint
movements the robot was capable of. We had
to find a way to modify the demonstration to
preserve the “dance” but make it possible for
the robot to do. We considered several
options:

(1) Scale and trandlate the joint trajectories to
make them fit within robot joint limits.
The Cartesian location of the limbs is not
taken into account.

(2) Adjust the visual features the robot is try-
ing to match until they are all within reach.
This can be done by trandating or scaling
the images or three dimensional target
locations. It is not clear how to do thisin a
principled way, and the effects on joint

motion are not taken into account.

(3) Build the joint limits into a special version
of the perception algorithms, so that the
robot can only “see” feasible postures in
interpreting or reasoning about the demon-
stration. This approach trades off joint
errors and Cartesian target errorsin a
straightforward way.

(4) Parameterize the performance in some way
(knot point locations for splines, for exam-
ple) and adjust the parameters so that joint
limits are not violated. Human observers
score how well the “style” or “essence” of
the origina performance is preserved, and
select the optimal set of parameters. Thisis
very time consuming to do, unless it is
possible to develop an automatic criterion
function for scoring the motion.

We implemented the first option. It is clear
that we should also consider the alternative
approaches. We learned from this work that
we need to develop algorithms that identify
what is important to preserve in learning from
a demonstration, and what is irrelevant or less
important. For example, we have begun to
implement catching based on learning from
demonstration (Fig. 3), where the learned
movement must be adapted to new require-
ments, such as the ball trgjectory4). For catch-
ing what isimportant is that the hand intercept
the ball at the right place and time in space,
and the joint angle trajectories are secondary.

We have begun to implement learning how
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to juggle three balls from demonstration on
the humanoid robot. We have found that in
this case actuator dynamics and constraints
play a crucial role. Because the hydraulic
actuators limit the joint velocities to values
below that observed in human juggling, the
robot needs to significantly modify the
observed movements in order to juggle suc-
cessfully. We have manually implemented
several feasible juggling patterns, and one pat-
tern is shown in Figure 1. Something more
abstract than motion trajectories needs to be
transferred in learning from demonstration.
The robot needs to be able to perceive the
teacher's goals to perform the necessary
abstraction. We are currently exploring alter-
native ways to do this.

4 Learning from Practice

After the robot has observed the teacher's
demonstration, it still must practice the task,
both to improve its performance and to esti-
mate quantities not easily observable in the
demonstration. In our approach to learning
from demonstration the robot learns a reward
function from the demonstration, which then
alowsit to learn from practice without further
demonstrations;1]. The learned reward func-

A frame of motion showing the end of
a cafching sequence.

tion rewards robot actions that look like the
observed demonstration. Thisis a very simple
reward function, and does not capture the true
goals of actions, but works well for many
tasks. The robot aso learns models of the task
from the demonstration and from its repeated
attempts to perform the task. Knowledge of
the reward function and the task models
allows the robot to compute an appropriate
control mechanism.

Lessons learned from implementations of
learning from practice include:

([® Simply mimicking demonstrated motions
is often not adequate.

[® Given the differences between the human
teacher and the robot learner and the
small number of demonstrations, learning
the teacher’s policy (what the teacher
does in every possible situation) often
cannot be done either.

(@ However, a task planner can use a
learned model and reward function to
compute an appropriate policy.

[® This model-based planning process sup-
ports rapid learning.

[® Both parametric and nonparametric mod-
els can be learned and used.

[® Incorporating a task level direct learning
component, which is non-model-based,
in addition to the model-based planner, is
useful in compensating for structural
modeling errors and slow model learning.

5 Future Goals

Future goals of the CyberHuman Project
include communicating style, more complete
behaviors, and interacting with systems that
have a continuous existence. For example,
many video game players would like to create
characters that behave like the human player,
including aspects of their personality. Current-
ly we can communicate isolated skills, but we
look forward to communicating much more
complete models of behavior.
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