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Transmission of nonclassical quantum states by quantum teleportation of continuous
variables is studied. Protocol of quantum teleportation via a two-mode squeezed-vacuum
state in a noisy environment is formulated by the Glauber-Sudarshan P-function. Using the
nonclassical depth as an estimation parameter of transmission performance, we compare
the teleportation scheme with the direct transmission through a noisy channel. The noise
model is based on the coupling to the vacuum field. We find that the teleportation channel
has better transmission performance than the direct transmission channel in a certain
region. The bounds for such region and for obtaining the nonvanished nonclassicality of the
teleported quantum states are also discussed. We also mention the required conditions for

transmitting nonclassical features in real experiments.

Keywords

Quantum teleportation, Continuous variable, Two-mode squeezed-vacuum, Non-clas-

sical depth

1 Introduction

Quantum information technologies,
including quantum computation and quantum
cryptography, can be realized by completely
controlling the quantum states. It is well
known that these technologies have some
amazing performances compared to the pres-
ent technologies based on classical physics in
which quantum theory is not includedi;. To
construct the systems or devices for these
technologies, it is necessary to establish the
theory for the transformation properties of
guantum state itself, i.e. “quantum informa-
tion”, as conventional information theory has
been used for conventional information pro-
cessing technologies.

Meanwhile, much attention has recently
been paid to the scheme of “quantum telepor-
tation” that is the protocol to transform quan-
tum states indirectly. The name of “teleporta-
tion” has come from the following reason.
Here, we consider the reconstruction of the
prepared arbitrary quantum state at a distant

place without directly transmitting the pre-
pared state itself. In the region of classical
theory, it is a trivial task. Measuring the
parameters that are necessary for reconstruct-
ing the state, transferring the results of meas-
urements, and then reconstructing the origina
state at distant places. On the other hand, it
seems impossible to do the same task in the
guantum region because of the following two
reasons. Firgt, it is impossible to know exact
values of quantum parameters by the only
one-time measurement since these are given
by a probabilistic function. Secondly, to make
plural perfect copies of the original state is
also prohibited by the principle of quantum
mechanics (2. Nevertheless, in 1993, Bennett
et al.[31 showed that such indirect transforma-
tion of quantum state is possible by using the
guantum mechanically entangled state, which
has no correspondence in classical theory, and
so-called simultaneous measurement. They
called this protocol as “quantum teleporta-
tion”. In their original proposal, the theory
was treated within finite dimensions in Hilbert
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gpace. Then it was generalized into the tele-
portation of continuous variables by using
continuously entangled states4). More practi-
cal scheme of the continuous variable telepor-
tation was proposedis) in which a two-mode
squeezed-vacuum state is employed as an
entangled state. The experimental demonstra-
tion of a coherent state teleportation was per-
formed by using quantum optical fieldge;.

While quantum teleportation attracts a
great deal of researcher’s interests as men-
tioned above, its performance in the viewpoint
of quantum information transmission has not
been clarified yet. Although the teleportation
of a coherent state has several advantages in
experimental point of view, it is fundamentally
able to transfer arbitrary unknown quantum
states including a variety of nonclassical states
by teleportation. In this report we investigate
that how much nonclassicality can be trans-
ferred by the noisy teleportation of continuous
variables and if the capability of the teleporta-
tion is better than that of the direct transmis-
sion or noti7;, with the help of the Glauber-
Sudarshan P-function representation and the
nonclassical depth which has been proposed to
estimate the strength of the nonclassicalityis;.
In our model, it is assumed that the noise
comes from the coupling between the system
and an environment in the vacuum state,
which is commonly encountered in optical
guantum communication networks. We reveal
that the transfer capability of nonclassicality
by the teleportation strictly depends on the
degree of the two-mode sgueezing, the loss of
the channel, and the strength of theinitial non-
cassicality of the quantum state to be teleport-
ed. It is shown that the teleportation channel
has better transmission performance than the
direct transmission in a certain region.

In the following sections, we precisely dis-
cuss these topics by using equations of quan-
tum mechanics.

2 Protocol of the Teleportation of
Continuous Variables

A schematic of the continuous variable

teleportation is depicted in Fig.1isiie]. Tele-
portation between the sender, Alice, and the
receiver, Bob, is performed by sharing a two-
mode squeezed-vacuum staterwaggiven by
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In the figure,M’stands for the quantum
measurement performed at the sender
side,' T’ represents the unitary transforma-
tion carried out at the receiver side
and' EPR’indicates the entangled quantum
state shared by Alice and Bob.

where @ (®) and @ (B) are the bosonic annihi-
lation and creation operators for the mode A
(B), respectively.(n*Jandne[] are the photon-
number eigenstates of the mode A and B,
respectively, and the parameter) is defined by
A =tanh r. For the sake of simplicity, the
squeezing parameter r in Eqg. (1) has been
assumed to be positive through this paper.
The mode A and B are assigned to the modes
for Alice and Bab, respectively.

In aredlistic situation, since the environ-
ment inevitably in uences the two-mode
squeezed-vacuum shared by Alice and Bab,
the pure squeezed-vacuum state is turned into
the mixed state and the quantum entanglement
is degraded. A state change of the quantum
states induced by the environment is fully
described by a completely positive (CP) map
to1. Thus the mixed quantum staten? shared
by Alice and Bob is represented by the follow-
ing expression:

pe = (L0 £7) |9l udP|, (2)
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where £4 and 27 are the CP maps for the mode
A and B, respectively, and we consider the sit-
uation that these CP maps have the same prop-
erties. The environment is assumed to be in
the vacuum state since thermal photons can be
neglected in optical frequency region. Under
these assumptions, the CP maps 24 and 27 are
given byrio;

cremllerti)]

where g is a positive parameter and the super-
operators £+ and £ are defined by

£AK =aXal Kix= %(a*&)‘( L Xata+ ), (@)

for an arbitrary operator X, and £* and k?
follow the same definitions with[B and 18". The
CP maps £ and £7 transform a coherent state
into another coherent state with a reduced
complex amplitude such as

Llay(Bl = E(a, BYlavTH{BVT, (5)

where T = exp(—g) and E(a ,B ) is the func-
tion

Elas) =exp [ 311 -7) (laf + 47 —20) | (0)

The parameter T represents the transmittance
of the noisy quantum channel. Although this
is one of the simplest loss mechanism in quan-
tum channels, it can model experimental situa-
tions well.

Suppose that Alice has an arbitrary quan-
tum statep]f, which is to be teleported to Bob's
hand. The operatorp* =p1&= pl% represents
the total quantum state of Alice and Bob. To
teleport the quantum statepls, Alice performs
the simultaneous measurement of the position
and the momentum of the mode A and Cia2]
described by the projection operator X© (X, p)
=0p*© (X, p)dod*© (X, po. The vectortp©
(x, p)Ois the simultaneous eigenstate of X°[]
X" and pI°0 A1

B4C (2, p)) = % f Tyl 44 @ e, (1)

The probability P(x, p) that Alice obtains the

measurement outcome (X, p) is given by
Plz,p) = Trapc [(XAC(I,P) 2 iB) (&7 ®.5icr})] ©(8)

Alice informs Bob of her measurement out-
come (X, p) by a classical communication
channel. By using the state-reduction formula
ro1, the quantum statef®(x, p) at Bob's hand
becomes

Trac [(£4, ) 217) (647 © 55)]

Traze [(R49(e,0) @ 12) (588 ® 65)]

P (z,p) = {9)

After receiving the Alice’'s measurement out-
come (x, p), Bob applies the unitary operator
DB(x, p) = €mPIe® = gBou®tg the quantum
statep1®(x, p) wherey = (xO ip)/v2. Then he
finally obtains

poni(x,p) = DP {2, p)p? (=, p) DB (z, p). (10)

Averaging the outputpl, (X, p) over the proba-
bility distribution of P(x, p) in Eq. (8), the
averaged output state for Bobp, is derived as

P2, = f dz f dp P(z, p)p% (2, D)

=<} o N
=f dz:f dpDB(a:,p)

Trac (X (e p 17) (647 ©45)1 D7 @py. (1)

3 Formulation based on the P-
function Representation

An arbitrary quantum state can be repre-
sented in a diagonal form with respect to
coherent states, which is the P-function repre-
sentationf1oj. 1n the following section, we for-
mulate the teleportation protocol based on the
P-function representation which provides us
some physical insights and the most straight-
forward formulation in order to quantify the
transmission of the nonclassicality of the input
guantum states with respect to the nonclassica
depth. It iswell known that when the P-func-
tion is singular or not positive definite, the
guantum state is nonclassical.

The P-function representation of the arbi-
trary input quantum statep15, is given by
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5 = f da Pn(a)|a)(aC|. (12)

It is clear from Eq. (12) that if the teleported
output state for a coherent state input is found,
the teleported quantum state for an arbitrary
input is automatically given. After tedious
calculations, we obtain the teleported quantum

stateplo. (X, p) as

ﬁic(zlp)
JaPola)e ™ iyl DB{posr)pl DB parr)

T

Jd%a Pola) exp [—T:—;W’}—Q_—ﬂ\a HIZ]

(13)

Thus the teleported quantum state averaged
over the probability distribution P(x, p) is
given by

= [ az [ awr@piien
—o —oo

- / La Po(a)DP )il DP H(a), (1)

where the density operatorpf, - represents the
thermal state with average photon number 1 +
which is given by

nATgl—izi—J;_l—(l—e_zr)T. (15)
For example, the output state for the coherent
state input Pi.( ) =6 @(a 0B ) is given bypl.
=D2( )ak + D¥ (@ ) which represents the ther-
mal coherent state. More generaly, the basis
of the coherent state expansion (1 [o0) in the
input stateps, is transformed into the thermal
coherent state D(u )als + D'(@ ) by the lossy
channel teleportation. Here we note that the
environment in the teleportation channel does
not directly degrade the transferred quantum
statepl.. Degradation of g, in this teleporta-
tion model is caused by the imperfect squeez-
ing and the environmental decoherence of the
two-mode sgueezed-vacuum before the dis-
placement operation by Bob. As a conse-
guence, the losses of the teleportation channel
injects the thermal noise into the transferred
guantum state with the average photon num-
ber 1, + instead of the direct degradation of
P ) in Eq. (14). It characterizes the telepor-
tation channel definitely different from the

direct transmission channel as discussed |ater.

The teleportation channel is also character-
ized by the following transformation of the P-
function;

Pu(a) — Pa(a) = 8 Pa(B)e” 5 (16)

where P,.(a ) is the P-function of the quantum
state @l.. and this transformation simply
shows the thermalization process of the tele-
portation.

4 Fidelity

For the teleportation of the pure input state
0% =0ven ¢el, the fidelity is given by
Frel = w:c[pmlw )
a—p)?

- [ @ [@squ@ra@e S, A7

where Q@ ) = (Ut Do Cwer? is the Q-func-
tion of the original state. Itiseasy to see that
lim lim #*' =1 lim F*' == / d*a @i ia

T—1 A1 A0

) < 1. (18)

When the original state is the coherent stete,
the fidelity becomes

1 1+4aA
I+ fiar 200+ A= AT) (19)

Fealar) =

In case of the ideal quantum teleportation (T =
1), thisresult is identical with that obtained so
farfia). Similarly, the fidelities for the Fock
stateon and the Schrddinger-cat state
o 0o O) /202 aregiven by

_ 1 1 — fisr ™ 1 +n
Ftel — )\T
tel(far) [ (1 +ﬁ)‘T) P, (1 R2 ) (20)

and
) 2
w1 sinh (122 af?)
Fit(ar) = SRR ) {1 + [W [(21)

respectively, where P, is the Legendre polyno-
mial of order n. It is worth noting that the
fidelitiesin Egs. (19), (20) and (21) take finite
values even if T = 0 (the input state is com-
pletely lost and turned into the vacuum stete).
This is because the output state can still be
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made with the finite optical energy at Bob's
hand after the classical communication from
Alice.

5 Nonclassical Depth

The nonclassicality of quantum states are
very important in the fields of quantum optics
and quantum information theory. In this sec-
tion, we briefly follow the definition of the
nonclassical depth first, and then investigate
the transfer property of the nonclassical depth
by teleportation. The nonclassical depthr (s]
of the quantum statep] is defined as the mini-
mum value of the parametert which gives the
non-negative value of the following quantity
Ro 1) forala.

R == [@ar@en (L),

where P(q ) is the P-function of the quantum
statef] andr isarea parameter. The nonclas-
sical deptht . always satisfy the inequality O
O01.01 The Fock state and the superposi-
tion of two coherent states (the Schrédinger-
cat state) have the nonclassical depth of unity
(t . =1). Thenonclassical depth of the single-
mode sgueezed state with squeezing parameter
& O ree isgiven by

= g =2 (007, @)
which takes the maximum value of%in the
strong squeezing limit.

The nonclassical depth of the teleported
quantum statepl.. is easily found from Eq.
(14). Substituting Eqg. (14) into Eqg. (22), the
R-function of the teleported quantum statedlo.
iscalculated as

Ria,7) = ;_/d“’ﬁ (@) exp (,M) (243

m(r + finr) T+ fiar

This equation shows that the nonclassical
depth of the original stater I and that of the
teleported stater 2 are related by the following
relation:

FOU  paay [Tén _ ﬁAT.O] ) (25)

Pl

Thus for the teleported quantum statepl.. to
keep the nonclassical properties, the squeezing
parameter r of the two-mode squeezed-vacu-
um state shared by Alice and Bob have to sat-
isfy

1 17
r>*§ln(17 7 ) (26}

If TJ1— I, none of any nonclassical proper-
ties remain in the teleported quantum state. |f
r = 0 (no squeezing), the nonclassical proper-
ties will never be teleported, i.e.,t ¥ =0 as
expected. Fig.2 shows the nonclassical depth
1 2 of the teleported statep™ as a function of
the squeezing parameter r for several loss
parameters T (A), and the lower bound of r for
obtaining finiter ¢* at Bob’s hand (B). Eq.
(25) implies that the transmitting performance

05 ) =

0.4
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50.3 =

0.2
a
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T

Figure (A) shows the nonclassical
deptht .. Of the teleported quantum
states flow in case of (a) T=1.0, (b)
71=0.9, (c) T=0.8, (d) T=0.7 and (e)
T=0.6. Figure (B) indicates the lower
bound of the squeezing parameter for
obtaining the non-vanished nonclassi-
cal depth of the teleported quantum
state Mo

In the both figures, the nonclassical depth
of the input quantum state pli, iS assumed to
be T in— 05
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measured by the nonclassical depth explicitly
does not depend on what kind of nonclassical
state is to be teleported. It means that if two
guantum states have the same nonclassical
depth, their teleported quantum states also
have the same nonclassical depth, independ-
ently of their quantum properties. For exam-
ple, the Fock state and the Scrodinger-cat state
have the same nonclassical depth ¢ .= 1) and
thus have the same transfer properties about
the nonclassicality while the fidelities in Eq.
(20) and Eq. (21) are obviously different.

6 Teleportation and the Direct
Transmission

In this section, we discuss the fidelity and
the nonclassical depth of the continuous vari-
able teleportation channel and those of the
direct transmission channel. It is reasonable
to assume that the direct transmission channel
is defined by the CP map which is used to
transfer the two-mode squeezedvacuum in the
teleportation channel (Eq. (3)). By this
assumption, the CP map of the direct transmis-
sionc is characterized by the transmittance T.
In the above sections, it has been tacitly
assumed that the source of the two-mode
squeezed-vacuum is located on the middle
point of the whole teleportation channel and
the two quantum channels for the two-mode
squeezed-vacuum have the same length. Thus
the CP maps £*&(T) and £ (T?) are used as the
channels for the two-mode sgqueezed-vacuum
and the channel for the direct transmission,
respectively. We first derive the formula of
the fidelity and the nonclassical depth in the
direct transmission channel for given T and
then compare them with those of the teleporta-
tion channel with appropriate lengths.

With the help of Eq. (5), the output state
for the direct transmission channel with the
transmittance T is calculated as

=5 [ #arn (%) ) e, (27)

where the input state is given by Eq. (12).
The transmission fidelity is also derived in a

same manner of the above sections as

Feir = %/dzaQin(a}P;n (%) (28)
Equations (27) and (28) clearly show that the
P-function of the input state after the direct
transmission is directly degraded by the envi-
ronment while the loss of the teleportaion is
the thermalization process as shown in Egs.
(14) and (17). Actually the fidelities for the
Fock state and the Schrédinger-cat state trans-
missions by the direct transmission calculated
from Eq. (28) are written by the function of T
as

; inh 37?
FS5(T) = [%J cosh ((1 — T)[af*),  (29)
and
FU(T) = explnlog T] = e 77", (30)

respectively. These are obviously different
from Egs. (20) and (21). Dependence on T of
the fidelities for the teleportation Fi& (13 + (r,
T)) and F& (1« (r, T)) for severa r are com-
pared to those of the direct transmission Fg&
(T») and Fé" (T?) in Fig.3.

The R function for the nonclassical depth
of the directly transmitted state is also given

by
R (a, 1) = ﬂ_—lT /d-z,@ P.(8)exp (—@;ﬂ) (31}

where T is the transmittance of the direct
transmission channel. By considering the def-
inition of the nonclassical depth and R*"(a VT,
T ), the nonclassical depth for the output state
of the direct transmissiont & is simply derived
as

(L) = 1T (32)

out

The channel always transmit a part oft ,, when
the input state is nonclassical .

Since the nonclassical depth of the outputs
for the teleportation and the direct transmis-
sion channels are simply given by Egs. (25)
and (32), respectively, it is now able to com-
pare them analytically. Define the difference
between the two kinds of quantum channels

124 Journal of the Communications Research Laboratory Vol.49 No.1 2002



l(A) a
00.8
-
—~ 0.6 b
0 C
T 0.4
-
.2 d
0 0.2 0.4 0.6 0.8 1
T2
1
5 (B) a
0 0.8
-
— 0.6
0 b
30_4
) C
0.2
a
0 0.2 0.4 0.6 0.8 1
T2

Dependence on the fransmittance T?
of (A) F... and (B) F, for (a) the direct
transmission and the teleportation with
(b) r=2.0, (c) r=07 and (d) r=0.2,
respectively, where 'r £1a[* = 6.0

1,(T) as

™ (T) — Ttel (T‘, T) o Tdir (T2)

out out

e T2+ (1—e )Tt =1 (0ST<1). (33)

The bound for the positiver ,(T) is easily
found as

(1 e"zr)2 > 4nn{l — 7in ) {34)

When Inequality (34) is fulfilled, the region
for the positiver ,(T) isgiven by

(1—e ) - /(1 -e )2 tdry(rin — 1)
21
=) 4 T (D
ZTin

<T . (35)
Since T given in Inequality (35) must fulfill O
0 T O 1 simultaneously,t i, in Inequalities
(34) and (35) have the condition of 1/2 [ 1 i,
0 1. Dependence on T for nonclassical
depths oft & (r, T) andt 4 (T2 and the bound
(34) areillustrated in Fig.4. For the input state
with the maximal nonclassicalityt i, 1,
Inequality (35) issimplified to

Tout
o O O O

o N O Y 0

0 0.2 0.4 0.6 0.8 1
T2

4

8
6
4
2
Q
0.5 0.6 0.7 0.8 0.9 1
Tin
Figure (A) shows the dependence of
the nonclassical deptht ... on the
transmittance T for (a) the direct trans-
mission and the teleportation with (b)
r=2.0, (c) r=0.7 and (d) r=0.2, respec-
tively, wheret,=1.0. Figure (B) indi-

cates the lower bound for existing the
positivet o(T) within 00 TO 1

0<T < (1-e?), (36)

and it gives the positiver o(T) for al T in the
strong squeezing limit (r —, oo ).

These results show that the better choice to
transmit the nonclassicality of the quantum
states still depends on the loss of the quantum
channel and the nonclassical depth of the
transferred quantum state itself.

7 Conclusion

In conclusion, we have studied the trans-
mission performance of nonclassical states by
the noisy teleportation channel with respect to
the nonclassical depth. The noise is assumed
that the coupling between the system and the
vacuum field. The results are compared to
those of the direct transmission channel and
we find that the teleportation is better than the
direct transmission in a certain region. Physi-
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cally decoherence mechanisms are different
between these two channels. The decoherence
in teleporation is effectively described by a
thermalization process with the averaged pho-
ton number T, ; although the loss model is
assumed to be the interaction with a vacuum
environment.

We finally apply our results to the realistic
situations in experiments. In the experiment
of re1, the fidelity of F = 0.58+ 0.02 was
achieved for the coherent state teleportation
with the amplitude efficiency of 0.9 for each
two-mode sgueezed-vacuum delivery. Due to
the technical limit, the squeezing used for tele-
portation was limited to 3 dB although the
maximum squeezing of 6 dB was already
observed in the same experimental setuprisj.
Substituting T = 0.81 and the effective squeez-
ing of 3dB (r = 0.34) into Eq. (19), we obtain
F = 0.62 for the coherent state teleportation.
Although the fidelity obtained is slightly over-
estimated, our theoretical result shows a rea-
sonable agreement.

Now we consider a transmission of the 6
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