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1  Introduction

Quantum information technologies,
including quantum computation and quantum
cryptography, can be realized by completely
controlling the quantum states.  It is well
known that these technologies have some
amazing performances compared to the pres-
ent technologies based on classical physics in
which quantum theory is not included[1].  To
construct the systems or devices for these
technologies, it is necessary to establish the
theory for the transformation properties of
quantum state itself, i.e.  “quantum informa-
tion”, as conventional information theory has
been used for conventional information pro-
cessing technologies.

Meanwhile, much attention has recently
been paid to the scheme of “quantum telepor-
tation” that is the protocol to transform quan-
tum states indirectly.  The name of “teleporta-
tion” has come from the following reason.
Here, we consider the reconstruction of the
prepared arbitrary quantum state at a distant

place without directly transmitting the pre-
pared state itself.  In the region of classical
theory, it is a trivial task.  Measuring the
parameters that are necessary for reconstruct-
ing the state, transferring the results of meas-
urements, and then reconstructing the original
state at distant places.  On the other hand, it
seems impossible to do the same task in the
quantum region because of the following two
reasons.  First, it is impossible to know exact
values of quantum parameters by the only
one-time measurement since these are given
by a probabilistic function.  Secondly, to make
plural perfect copies of the original state is
also prohibited by the principle of quantum
mechanics [2].  Nevertheless, in 1993, Bennett
et al.[3] showed that such indirect transforma-
tion of quantum state is possible by using the
quantum mechanically entangled state, which
has no correspondence in classical theory, and
so-called simultaneous measurement.  They
called this protocol as “quantum teleporta-
tion”.  In their original proposal, the theory
was treated within finite dimensions in Hilbert
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space.  Then it was generalized into the tele-
portation of continuous variables by using
continuously entangled states[4].  More practi-
cal scheme of the continuous variable telepor-
tation was proposed[5] in which a two-mode
squeezed-vacuum state is employed as an
entangled state.  The experimental demonstra-
tion of a coherent state teleportation was per-
formed by using quantum optical fields[6].

While quantum teleportation attracts a
great deal of researcher’s interests as men-
tioned above, its performance in the viewpoint
of quantum information transmission has not
been clarified yet.  Although the teleportation
of a coherent state has several advantages in
experimental point of view, it is fundamentally
able to transfer arbitrary unknown quantum
states including a variety of nonclassical states
by teleportation.  In this report we investigate
that how much nonclassicality can be trans-
ferred by the noisy teleportation of continuous
variables and if the capability of the teleporta-
tion is better than that of the direct transmis-
sion or not[7], with the help of the Glauber-
Sudarshan P-function representation and the
nonclassical depth which has been proposed to
estimate the strength of the nonclassicality[8].
In our model, it is assumed that the noise
comes from the coupling between the system
and an environment in the vacuum state,
which is commonly encountered in optical
quantum communication networks.  We reveal
that the transfer capability of nonclassicality
by the teleportation strictly depends on the
degree of the two-mode squeezing, the loss of
the channel, and the strength of the initial non-
cassicality of the quantum state to be teleport-
ed.  It is shown that the teleportation channel
has better transmission performance than the
direct transmission in a certain region.

In the following sections, we precisely dis-
cuss these topics by using equations of quan-
tum mechanics.

2  Protocol of the Teleportation of
Continuous Variables

A schematic of the continuous variable

teleportation is depicted in Fig.1[5][6].  Tele-
portation between the sender, Alice, and the
receiver, Bob, is performed by sharing a two-
mode squeezed-vacuum state｜ΨABSV〉given by

where a^ (b^) and a^†(^b†) are the bosonic annihi-
lation and creation operators for the mode A
(B), respectively.｜nA〉and｜nB〉are the photon-
number eigenstates of the mode A and B,
respectively, and the parameterλis defined by
λ= tanh r.  For the sake of simplicity, the
squeezing parameter r in Eq. (1) has been
assumed to be positive through this paper.
The mode A and B are assigned to the modes
for Alice and Bob, respectively.

In a realistic situation, since the environ-
ment inevitably in uences the two-mode
squeezed-vacuum shared by Alice and Bob,
the pure squeezed-vacuum state is turned into
the mixed state and the quantum entanglement
is degraded.  A state change of the quantum
states induced by the environment is fully
described by a completely positive (CP) map
[9].  Thus the mixed quantum stateρ^AB

SV shared
by Alice and Bob is represented by the follow-
ing expression:
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In the figure,‘M’stands for the quantum
measurement performed at the sender
side,‘T’represents the unitary transforma-
tion carried out at the receiver side
and‘EPR’indicates the entangled quantum
state shared by Alice and Bob.

Continuous variable quantum telepor-
tation

Fig.1
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where and are the CP maps for the mode
A and B, respectively, and we consider the sit-
uation that these CP maps have the same prop-
erties.  The environment is assumed to be in
the vacuum state since thermal photons can be
neglected in optical frequency region.  Under
these assumptions, the CP maps and are
given by[10]

where g is a positive parameter and the super-
operators and are defined by

for an arbitrary operator X^, and and 
follow the same definitions with b^ and b^†.The
CP maps and transform a coherent state
into another coherent state with a reduced
complex amplitude such as

where T = exp(–g) and E(α,β) is the func-
tion

The parameter T represents the transmittance
of the noisy quantum channel.  Although this
is one of the simplest loss mechanism in quan-
tum channels, it can model experimental situa-
tions well.

Suppose that Alice has an arbitrary quan-
tum stateρ^C

in which is to be teleported to Bob’s
hand.  The operatorρ^ABC =ρ^AB

SV○×ρ^C
in represents

the total quantum state of Alice and Bob.  To
teleport the quantum stateρ^C

in, Alice performs
the simultaneous measurement of the position
and the momentum of the mode A and C[12]
described by the projection operator X^AC (x, p)
=｜ΦAC (x, p)〉〈｜ΦAC (x, p)｜.  The vector｜ΦAC

(x, p)〉is the simultaneous eigenstate of x^C－
x^A and ρ^C＋ρ^A,

The probability P(x, p) that Alice obtains the

measurement outcome (x, p) is given by

Alice informs Bob of her measurement out-
come (x, p) by a classical communication
channel.  By using the state-reduction formula
[9], the quantum stateρ^B(x, p) at Bob’s hand
becomes

After receiving the Alice’s measurement out-
come (x, p), Bob applies the unitary operator
D^B(x, p) = ei(p^x B－x^ pB) = eμ^b†－μ*^b to the quantum
stateρ^B(x, p) whereμ= (x＋ip)/√2.  Then he
finally obtains

Averaging the outputρ^B
out (x, p) over the proba-

bility distribution of P(x, p) in Eq. (8), the
averaged output state for Bobρ^B

out is derived as

3  Formulation based on the P-
function Representation

An arbitrary quantum state can be repre-
sented in a diagonal form with respect to
coherent states, which is the P-function repre-
sentation[10].  In the following section, we for-
mulate the teleportation protocol based on the
P-function representation which provides us
some physical insights and the most straight-
forward formulation in order to quantify the
transmission of the nonclassicality of the input
quantum states with respect to the nonclassical
depth.  It is well known that when the P-func-
tion is singular or not positive definite, the
quantum state is nonclassical.  

The P-function representation of the arbi-
trary input quantum stateρ^C

in is given by
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It is clear from Eq. (12) that if the teleported
output state for a coherent state input is found,
the teleported quantum state for an arbitrary
input is automatically given.  After tedious
calculations, we obtain the teleported quantum
stateρ^B

out (x, p) as

Thus the teleported quantum state averaged
over the probability distribution P(x, p) is
given by

where the density operatorρ^B–nλT represents the
thermal state with average photon number –nλT

which is given by

For example, the output state for the coherent
state input Pin(β) =δ(2)(α－β) is given byρ^B

out

= D^B(α)ρ^B–nλT D^B†(α) which represents the ther-
mal coherent state.  More generally, the basis
of the coherent state expansion (｜α〉〈α｜) in the
input stateρ^C

in is transformed into the thermal
coherent state D^(α)ρ^–nλT D^†(α) by the lossy
channel teleportation.  Here we note that the
environment in the teleportation channel does
not directly degrade the transferred quantum
stateρ^in.  Degradation ofρ^in in this teleporta-
tion model is caused by the imperfect squeez-
ing and the environmental decoherence of the
two-mode squeezed-vacuum before the dis-
placement operation by Bob.  As a conse-
quence, the losses of the teleportation channel
injects the thermal noise into the transferred
quantum state with the average photon num-
ber –nλT instead of the direct degradation of
Pin(α) in Eq. (14).  It characterizes the telepor-
tation channel definitely different from the

direct transmission channel as discussed later.
The teleportation channel is also character-

ized by the following transformation of the P-
function;

where Pout(α) is the P-function of the quantum
state ρ^out and this transformation simply
shows the thermalization process of the tele-
portation.

4  Fidelity

For the teleportation of the pure input state
ρ^C

in =｜ C〉〈 C｜, the fidelity is given by

where Qin(α) = (1/π)｜〈αC｜ C〉｜2 is the Q-func-
tion of the original state.  It is easy to see that

When the original state is the coherent state,
the fidelity becomes

In case of the ideal quantum teleportation (T =
1), this result is identical with that obtained so
far[11].  Similarly, the fidelities for the Fock
state｜n〉 and the Schrödinger-cat state 
(｜α〉－｜－α〉) are given by

and

respectively, where Pn is the Legendre polyno-
mial of order n.  It is worth noting that the
fidelities in Eqs. (19), (20) and (21) take finite
values even if T = 0 (the input state is com-
pletely lost and turned into the vacuum state).
This is because the output state can still be
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made with the finite optical energy at Bob’s
hand after the classical communication from
Alice.

5  Nonclassical Depth

The nonclassicality of quantum states are
very important in the fields of quantum optics
and quantum information theory.  In this sec-
tion, we briefly follow the definition of the
nonclassical depth first, and then investigate
the transfer property of the nonclassical depth
by teleportation.  The nonclassical depthτc[8]

of the quantum stateρ^ is defined as the mini-
mum value of the parameterτwhich gives the
non-negative value of the following quantity
R(α,τ) for all α.

where P(α) is the P-function of the quantum
stateρ^andτis a real parameter.  The nonclas-
sical depthτc always satisfy the inequality 0
＜―τc ＜―

1.  The Fock state and the superposi-
tion of two coherent states (the Schrödinger-
cat state) have the nonclassical depth of unity
(τc = 1).  The nonclassical depth of the single-
mode squeezed state with squeezing parameter
ξ＝reiθ is given by

which takes the maximum value of 1—2 in the
strong squeezing limit.

The nonclassical depth of the teleported
quantum stateρ^out is easily found from Eq.
(14).  Substituting Eq. (14) into Eq. (22), the
R-function of the teleported quantum stateρ^out

is calculated as

This equation shows that the nonclassical
depth of the original stateτin

c and that of the
teleported stateτout

c are related by the following
relation:

Thus for the teleported quantum stateρ^out to
keep the nonclassical properties, the squeezing
parameter r of the two-mode squeezed-vacu-
um state shared by Alice and Bob have to sat-
isfy

If T＜―
1–τin

c , none of any nonclassical proper-
ties remain in the teleported quantum state.  If
r = 0 (no squeezing), the nonclassical proper-
ties will never be teleported, i.e.,τout

c = 0 as
expected.  Fig.2 shows the nonclassical depth
τout

c of the teleported stateρ^out as a function of
the squeezing parameter r for several loss
parameters T (A), and the lower bound of r for
obtaining finiteτout

c at Bob’s hand (B).  Eq.
(25) implies that the transmitting performance
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In the both figures, the nonclassical depth
of the input quantum state ρ^in is assumed to
be τin= 0.5.

Figure (A) shows the nonclassical
depthτout of the teleported quantum
states ρ^out in case of (a) T = 1.0, (b)
T = 0.9, (c) T = 0.8, (d) T = 0.7 and (e)
T = 0.6. Figure (B) indicates the lower
bound of the squeezing parameter for
obtaining the non-vanished nonclassi-
cal depth of the teleported quantum
state ρ^out

Fig.2
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measured by the nonclassical depth explicitly
does not depend on what kind of nonclassical
state is to be teleported.  It means that if two
quantum states have the same nonclassical
depth, their teleported quantum states also
have the same nonclassical depth, independ-
ently of their quantum properties.  For exam-
ple, the Fock state and the Scrödinger-cat state
have the same nonclassical depth (τc = 1) and
thus have the same transfer properties about
the nonclassicality while the fidelities in Eq.
(20) and Eq. (21) are obviously different.

6  Teleportation and the Direct
Transmission

In this section, we discuss the fidelity and
the nonclassical depth of the continuous vari-
able teleportation channel and those of the
direct transmission channel.  It is reasonable
to assume that the direct transmission channel
is defined by the CP map which is used to
transfer the two-mode squeezedvacuum in the
teleportation channel (Eq. (3)).  By this
assumption, the CP map of the direct transmis-
sion is characterized by the transmittance T.
In the above sections, it has been tacitly
assumed that the source of the two-mode
squeezed-vacuum is located on the middle
point of the whole teleportation channel and
the two quantum channels for the two-mode
squeezed-vacuum have the same length.  Thus
the CP maps A,B(T) and (T2) are used as the
channels for the two-mode squeezed-vacuum
and the channel for the direct transmission,
respectively.  We first derive the formula of
the fidelity and the nonclassical depth in the
direct transmission channel for given T and
then compare them with those of the teleporta-
tion channel with appropriate lengths.

With the help of Eq. (5), the output state
for the direct transmission channel with the
transmittance T is calculated as

where the input state is given by Eq. (12).
The transmission fidelity is also derived in a

same manner of the above sections as

Equations (27) and (28) clearly show that the
P-function of the input state after the direct
transmission is directly degraded by the envi-
ronment while the loss of the teleportaion is
the thermalization process as shown in Eqs.
(14) and (17).  Actually the fidelities for the
Fock state and the Schrödinger-cat state trans-
missions by the direct transmission calculated
from Eq. (28) are written by the function of T
as

and

respectively.  These are obviously different
from Eqs. (20) and (21).  Dependence on T of
the fidelities for the teleportation F tel

cat (–nλT (r,
T)) and F tel

n (–nλT (r, T)) for several r are com-
pared to those of the direct transmission F dir

cat

(T2) and F dir
n (T2) in Fig.3.

The R function for the nonclassical depth
of the directly transmitted state is also given
by

where T is the transmittance of the direct
transmission channel.  By considering the def-
inition of the nonclassical depth and Rdir(α√T,
τ), the nonclassical depth for the output state
of the direct transmissionτdir

out is simply derived
as

The channel always transmit a part ofτin when
the input state is nonclassical.

Since the nonclassical depth of the outputs
for the teleportation and the direct transmis-
sion channels are simply given by Eqs. (25)
and (32), respectively, it is now able to com-
pare them analytically.  Define the difference
between the two kinds of quantum channels
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τD(T) as

The bound for the positiveτD(T) is easily
found as

When Inequality (34) is fulfilled, the region
for the positiveτD(T) is given by

Since T given in Inequality (35) must fulfill 0
＜―

T ＜―
1 simultaneously,τin in Inequalities

(34) and (35) have the condition of 1/2 ＜―τin

＜―
1.  Dependence on T for nonclassical

depths ofτtel
out (r, T) andτdir

out (T2) and the bound
(34) are illustrated in Fig.4.  For the input state
with the maximal nonclassicalityτin→1,
Inequality (35) is simplified to 

and it gives the positiveτD(T) for all T in the
strong squeezing limit (r→∞).

These results show that the better choice to
transmit the nonclassicality of the quantum
states still depends on the loss of the quantum
channel and the nonclassical depth of the
transferred quantum state itself.

7  Conclusion

In conclusion, we have studied the trans-
mission performance of nonclassical states by
the noisy teleportation channel with respect to
the nonclassical depth.  The noise is assumed
that the coupling between the system and the
vacuum field.  The results are compared to
those of the direct transmission channel and
we find that the teleportation is better than the
direct transmission in a certain region.  Physi-
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Dependence on the transmittance T 2

of (A) Fcat and (B) Fn for (a) the direct
transmission and the teleportation with
(b) r = 2.0, (c) r = 0.7 and (d) r = 0.2,
respectively, where n－=｜α｜2 = 6.0

Fig.3 Figure (A) shows the dependence of
the nonclassical depthτout on the
transmittance T for (a) the direct trans-
mission and the teleportation with (b)
r = 2.0, (c) r = 0.7 and (d) r = 0.2, respec-
tively, whereτin = 1.0. Figure (B) indi-
cates the lower bound for existing the
positiveτD(T) within 0＜―T＜―1

Fig.4
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cally decoherence mechanisms are different
between these two channels.  The decoherence
in teleporation is effectively described by a
thermalization process with the averaged pho-
ton number –nλT although the loss model is
assumed to be the interaction with a vacuum
environment.

We finally apply our results to the realistic
situations in experiments.  In the experiment
of [6], the fidelity of F = 0.58±0.02 was
achieved for the coherent state teleportation
with the amplitude efficiency of 0.9 for each
two-mode squeezed-vacuum delivery.  Due to
the technical limit, the squeezing used for tele-
portation was limited to 3 dB although the
maximum squeezing of 6 dB was already
observed in the same experimental setup[13].
Substituting T = 0.81 and the effective squeez-
ing of 3 dB (r = 0.34) into Eq. (19), we obtain
F = 0.62 for the coherent state teleportation.
Although the fidelity obtained is slightly over-
estimated, our theoretical result shows a rea-
sonable agreement.

Now we consider a transmission of the 6

dB squeezed state (which corresponds to r =
0.69 andτin

c = 0.38) by the teleportation chan-
nel with the 6 dB two-mode squeezed-vacu-
um.  From Eq. (25), we find that the transmit-
tance of T > 0.83 is at least necessary for
obtaining the nonzero nonclassical depthτout

c

after the teleportation.  It is also shown in
Fig.4 (B) that such teleportation channel will
be better than the direct transmission channel
with T2 for the purpose of transferring highly
nonclassical states, such as Fock states.

As shown in this report, the performance
of the continuous variable teleportation as a
quantum communication channel depends not
only on the parameters of the channel, but also
on what kind of quantum information we want
to send.  To find the best way for transmitting
quantum information through various possible
channels is generally a nontrivial problem.  It
would be an important future problem to study
efficient codings against some practical noise
models in both teleportation and direct trans-
mission scenarios.
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