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1 Introduction

As discussed in Article 2-1 of this specia
issuert), the second is currently defined based
on the period of the radiation corresponding to
the transition between the hyperfine structure
levels of the ceslum atom. Although current
science has by no means elucidated the full
range of natural phenomena, the description of
the energy structures of atoms by quantum
mechanics is based on principles and con-
stants that are universal and time-invariant,
and thus this description is extremely accurate.
It is now widely accepted that radiations cor-
responding to the quantum transitions of
atoms are most suitable for defining and real-
izing time and frequency standards.

To understand the definition and the mech-
anism of atomic frequency standards, a broad
base of knowledge is indispensable, encom-
passing el ectromagnetics, quantum mechanics,
and atomic physics. A standard reference
work is availablerz; with a detailed explana-
tion of the subject, but it is extremely volumi-
nous and hard to read through. Other valuable
publications3ji4] outline the subject more ssim-

ply, including textbooks for time and frequen-
cy standards. Here | will attempt to explain
the relevant basic physics as intuitively as pos-
sible, to provide a base of knowledge for those
approaching these textbooks. The major top-
ics | will discuss include atomic energy levels,
guantum transitions (such as the electric
dipole transition), and Ramsey resonance. A
knowledge of mechanics, electromagnetics,
and quantum mechanics equivalent to that of a
second or third-year student at a science or
technological college should be sufficient to
understand the following descriptions.

As | obviously cannot explain every rele-
vant point in this short article, please see refer-
encesi2], [3],andi4; for further details. | hope
that this article will provide the reader with
the basic concepts required to understand
these texts.

2 Atomic specira and energy lev-
els

The characteristics of quantum theory can

be roughly stated as follows: phase space (the
virtual space whose axes are the positions and
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momentums of the particles that constitute the
system) is discretely divided into a number of
regions, each of which has an area of the size
of the Planck constant, h, and takes a physical
state that cannot be reduced any further. Asa
result, it can be shown that discrete energy
states (energy levels) are present within a
bound system. In understanding this effect,
the description of the harmonic oscillator in
the quantum mechanics textbook by Tomona-
gas) serves as an excellent reference. Howev-
er, asimilar effect can also be observed in the
simpler and more extreme example of a
square-well potential.

Let us consider a square-well potential in
which the potential is zero in a region of
length L, given an infinitely large exterior
region. The particles contained in the well
diffuse in the region between O and L. Let us
assume that the phase space is devided into
discrete divisions which have the Planck con-
stant h. The gpatia range is confined within
L, and in the wave description, the forward
and reverse waves are superposed to form a
standing wave. Thus, the momentum P_of the
n-th state is considered to take a discrete
value, asfollows (Fig.1):
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Thus, denoting the mass of the particle by
m, the energy, E, of the n-th state is obtained
as
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without solving the Schrodinger equation.
In this way, in accordance with quantum theo-
ry, momentum and energy level take discrete
values in a system confined to afinite region.

Photons, quanta of electromagnetic waves,
are considered to propagate infinitely once
generated if not confined within a finite
region. The energy in this case takes continu-
ous values and satisfies the well-known Ein-
stein formulafor light quanta:

E=hv (€)]

Viewing this equation together with the
formulae ¢ = Av for the wave, and E/c = p for
the photon, we may also conclude that the
product of the photon wavelength and
momentum is quantized with the Planck con-
stant. Further, angular momentum is an
important physical quantity in atomic physics.
It can be regarded as the generalized momen-
tum conjugate to the angle, which only takes
values from 0 to 2x radians, so that the maxi-
mum range of uncertainty is 2z. For this rea-
son, the angular momentum is quantized to the
parts whose values are h/2x. In this manner,
the region in the phase space with afinite area
of the size of the Planck constant h takes a
guantum state. This differs fundamentally
from the classical ideathat each point in phase
space represents an independent physical
state. However, this difference aside, we must
not forget that the descriptions of phenomena
provided by classical physics are also effec-
tive in most cases.

With regard to the finite or infinite nature
of the system, an atom is a finite bound state
in which electromagnetic interactions bind the
electrons in aregion of approximately 0.1 nm
around the small nucleus. Thus, the physical
system of the atom has discrete energy levels.
Considering that the electrons are bound in a
region of approximately 10° m by the poten-
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tial generated by the nucleus, it is roughly
described that the electrons bound in a well
potential of the size of the atom make the
energy level. We can estimate the energy lev-
elsin an atom by calculating the energy levels
of an electron in the square well potential.
Denoting the Planck constant as h, the mass of
the electron as m, and the region in which the
electron is confined as L, EQ. (2) gives the fol-
lowing expression for the energy levels of the
confined electron:

R

" 8miI?

" “

Given a Planck constant h of 6.63x10*
[J-5], an electron mass m of 9.11x10* [kg],
and length L of 1.0x10% [m], the energy value
forn=1is

_ (6.63x107)7[T . s}’
8x9.11x 107 [kg] x 1x 107%)*[m)? 5)
=6.04 x 107#[]]

n=1

The freguency v of the photon correspon-
ding to this energy is obtained from E = hy:

6.04x1078[J]
6.63x 1071 5] (6)
=9.10x 10" [Hz]

This energy is the value needed to excite a
particle in the zero kinetic energy state in a
square well potential to the next higher level,
but is a'so considered to be of approximately
the same order of magnitude as the energy
required to release a particle bound in a finite
potential. Of course, the details of the value
largely depend on the shape of the potential,
but the value here corresponds to the short
ultraviolet wavelength, which agrees with the
finding that the ultraviolet range is required
for the ionization of atoms. A square well
potential is far from a realistic model for the
atom, but it is effective in estimating the order
of magnitude of the relevant phenomena.

The energy levels of an atom are more
precisely calculated based on the example of
the hydrogen atom, where electrons are bound
in a Coulomb potential described in many
textbooks [61-81. The levels depend not only

on the principal quantum number and the
orbital quantum number, which both appear in
the expression for the hydrogen atom, but also
on other internal and external factors such as
orbital angular momentum, spin, the interac-
tions between these factors, and the external
electromagnetic field, al of which complicate
the problem. Here it is common practice to
use the following notations: orbital angular
momentum for the electron is |, its spin is s,
and its total angular momentum, which is the
sum of these two, isJ. The states with | = 0,
1, 2 ... arelabeled the S state, the P state, the
D state, and so on, respectively. Nuclear spin
is denoted as |. The quantity obtained by
combining all the angular momentums of the
electron and the nucleusis called F.

When energy levels are close to each
other, these levels are referred to as fine struc-
tures. These structures are usually formed due
to spin-orbit interaction. When energy levels
are even closer together due to interactions
such as spin-spin magnetic interactions, these
levels are called hyperfine structures. Let us
consider these in the example of the cesium
atom (Fig.2).
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The frequency corresponding to the transi-
tion between the S state, which is the ground
state, and the P states, which is the first exited
state of the angular momentum, is over 300
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THz. The P states are divided into two states
corresponding to orbital-spin combined angu-
lar momentums with values of 1/2 and 3/2,
respectively, with a resultant frequency differ-
ence of 17 THz. This is a fine structure. A
cesium nucleus has a nuclear spin of | = 7/2.
In the ground state of the atom, | = 0 holds and
the total angular momentum F (combining the
nuclear spin of 7/2 and the electron spin of
1/2) is either 3 or 4, which results in a small
difference in the energy levels. Thisis a
hyperfine structure, and the frequency corre-
sponding to the transition between these ener-
gy levels is approximately 9 GHz. It is clear
that the intervals of the fine structures are only
several percent of those of normal energy lev-
els and that the hyperfine structures exhibit
intervals approximately one thousandth the
size of those of fine structures. In the magnet
field, each level splits further into sublevels,
due to the Zeeman effect, according to the
total angular momentum (including nuclear
angular momentum).

3 Interaction between atoms and
electromagnetic waves

If a quantum state is the energy eigenstate
in astrict sense, once the state is established, it
will continue to exist infinitely, without any
transitions to other states. However, in reality,
most quantum states undergo transitions to
other states in finite time through various
interactions. In particular, when the atom is
excited to a higher-energy state, it will under-
go transitions to lower-energy states sponta-
neously through intra-atomic interactions even
without any energy provided from outside the
atom. If the excited state undergoes a transi-
tion in this way (through a given interaction)
to a lower-energy level with a certain proba-
bility per unit time, the probability that the
atom will stay in the initial state steadily
decreases with time. When this is the case,
the excited energy level is said to have afinite
lifetime. Here"lifetime" is most often defined
as the time after which the probability that the
system will continue to remain in the initial

state becomes 1/e. The time after which the
probability of existence becomes 1/2 is
referred to as the well-known "half-life."

To say that an energy level has a lifetime
is to say that the level no longer has a definite
energy value but that it does have a finite
width. In this sense, the frequency of the
guantum transition between two energy levels
also has a finite width instead of a definite
value. When applying the quantum transition
to frequency standards, it is desirable to use a
transition that features a narrow frequency
width and occurs between states with lifetimes
that are as long as possible. Although transi-
tions do not readily occur from states with
long lifetimes, there are methods (such as
induced emission) that applies external forces
to effect a transition(o1-[113; such control thus
induces transitions with the desired long life-
times.

To calculate the lifetime of an excited state
precisely, a proper quantum mechanical treat-
ment is required. However, for an intuitive
understanding of the concept, a fully quantum
treatment is not necessary; instead, a semi-
classical treatment can provide an approxi-
mate idea. Using the classical theory may
give an incorrect description of the elementary
processes, but the resultant macroscopic quan-
tities are meaningful. This is also expected
from Ehrenfest's theorem, which states that
the motion of the expected value of the wave
function equals classical motion when the
potential change is negligible within the extent
of the wave packet. Thus, when treating a
large number of atoms, the semi-classical
descriptions of quantities are sufficiently
meaningful, as quantities corresponding to the
sum of random quantum processes. In addi-
tion, this treatment is valuable in the sense that
the partial, precision application of guantum
theory alongside the classical theory provides
arelatively concrete understanding of the con-
cepts involved, greatly contributing to an intu-
itive understanding of the relevant phenomena
and enabling estimation at the required order
of magnitude. However, it should be noted
clearly that the model used here is applied in
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order to understand certain aspects of the phe-
nomena, and that it is used metaphorically,
with many features that are inconsistent with
reality.

Here, we will treat the problem based on
the classical theory and use the quantum theo-
ry partially, to describe the quantum transition
within the atom, as well as to explain the phe-
nomena numericallyi2).

First, in relation to the basic electric dipole
transition, let us consider the classical model
of simple harmonic oscillation of a dipole
charge (Fig.3).

Proper vibration
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Charge -e
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Classical model for electric dipole
radiation of an afom

Let us assume that an electron with charge
—e and mass m is bound to a heavy nucleus
with spring constant me?, (eigen frequency
being «,) and that it is damped weakly, at a
rate of 1/z by dipole radiation as it oscillates.
Assuming that the motion of the nucleus is
negligible, the energy loss of the atom is due
only to the motion of the electron. Further, as
the damping is extremely weak, this damped
oscillation and its energy value can be approx-
imated using simple harmonic oscillation at
each instant. In other words, let us assume
that the energy E(t) of the atom is approxi-
mately expressed as

E(I):%ma)ozxz(t)-F%mJtz(I) D

but is gradually damped to

¢

E(©)=FEe © 8)

during which the following holds:
ay >>1/7 €))

Denoting the dipole moment as d, the
power radiated by this oscillation is expressed
asfollows13r:

2d”
P= 357 (10)
Here, let us consider the dipole to consist

of simple harmonic oscillation of a charge
with an amplitude about the size the atom
itself. Denoting the size of the atom as a, the
position of the charge x in the one-dimension-
a direction of the oscillation is expressed as

follows:

x = gsin oyt (11)
and from
d=ex=easinw,! (12)

the following is obtained:

d=—ew,’x 13)
Inserting this into Eg. (10) gives a power
value of:

4
2 e’y x?

P 14
3 (14)

Ignoring the details of the coefficients and
assuming that the average of x is roughly in
the same order of magnitude as oscillation
amplitude a, the average of radiated power
<P>is

2 4 2
Wy a (15)

3
c

e
<P>~

Here, the radiated energy over r seconds is
estimated to be approximately <P> 7. Assum-
ing that this is approximately equal to the
energy of the light quantum with angular fre-
quency w radiated through the elementary
process of the quantum transition, and using
E,~<P>7~nw, and Eq. (15),

hc?
T~ e (16)
is obtained. Applying the fine structure con-
stant «=€*/hc to this gives the following
expression:
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Here, the oscillation amplitude a of the
dipole is assumed to be approximately the size
of the atom, 10 m. It should aso be noted
that (c/w,) approximately equals the wave-
length /1 of the radiation. The lifetime of the
excited state and the oscillation period of the
radiation upon decay (two values sharing the
same dimension for a single phenomenon) are
of largely different orders of magnitude. From
these results, we can see the reasons of the
large difference as follows: in the excited
state, the fine structure constant is much
smaller than 1 and the wavelength of the radi-
ation is much larger than the size of the atom;
thus the lifetime becomes larger than the oscil-
lation period (1/ w) of the radiated electromag-
netic wave by a factor equal to the product of
the fine structure constant and the square of
the ratio of wavelength to atomic size, as indi-
cated in Eq. (17). Observing only lifetime and
radiation frequency, it is clear that the excita-
tion lifetime is inversely proportional to the
cube of the radiation frequency of the quan-
tum transition.

When the radiation is visible light («w~ 3x
10%, 1~ 600 nm), it is understood from 7 ~
137x600?/3x 10 ~ 2x 10°® s that lifetime is
approximately severa tens of nano-seconds if
the transition is due to electric dipole radiation
of atomic size oscillation. Thisisin fact a
good approximation for the excited states of
many atoms. However, a quantum transition
with a much longer lifetime (known as the
"forbidden transition") cannot be understood
with this explanation. If this explanation is
valid in the microwave regions, along lifetime
is expected due to low frequency. There are,
however, some other reasons for the long life-
time of the transition of the microwave stan-
dards.

The transition of the hyperfine structure,
used in the definition of time and frequency
standards, is a magnetic dipole transition and
features an even longer lifetime than the elec-
tric dipole transition. Further, the forbidden

transition is another transition that does not
involve the electric dipole, due to the symme-
try of the atomic structure; instead, the transi-
tion is caused by electric quadrupoles or mag-
netic dipoles. The classical view of the longer
lifetimes of these excited states (relative to the
electric dipole) can be described in the follow-
ing manner.

Electric quadrupoles and magnetic dipoles
can be constructed with electric dipoles. As
shown in Fig.4, when two electric dipoles
oscillating in opposite directions are placed on
the same axis at a distance apart of a, corre-
sponding to the size of the atom, the electric
dipole oscillations cancel each other out and
electric quadrupole oscillation is generated.
As shown in Fig.5, if four electric dipoles are
placed on the sides of a square, the electric
dipole oscillations and the electric quadrupole
oscillations all cancel out and an oscillating
current in the form of aring is generated; this
is magnetic dipole oscillation.

a

14—_20A>2

—
a

Electric quadrupole oscillation formed
by two electric dipole oscillations

In these cases, the electromagnetic fields
of the paired electric dipoles do not complete-
ly cancel each other out; instead, a weak elec-
tromagnetic field remains (except on the spe-
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Magnetic dipole oscillation formed by
four electric dipole oscillations

cial axis equidistant from the respective
dipoles). For example, in Fig.4, a the posi-
tion on the x-axis at a distance r from the cen-
ter of the dipole pair, the electric field generat-
ed by the nearer of the two electric dipoles
paralel to the y-axisis assumed to be

_r—all

E, :A(r—a/Z)eim[r &) a18)

The electric field generated by the far side
electric dipole shows anti-phase oscillation:

o lt_r+a/2

E =-A(r+a/2e [ c ] (19)

The difference of +a/2 in amplitude A(r)
could be neglected at a sufficiently distant
position, but the phase difference remains.
Superposing these two electric fields gives the
resultant electric field:

E,~i%%E, 20)
(4

This is similar to the case of magnetic
dipole oscillation, in which the electromagnet-
ic fields generated by opposite paired electric
dipoles cancel each other out. In other words,

for electric quadrupole oscillation or magnetic
dipole oscillation, the amount of electric field
cancelled by the paired electric dipoles
increases as the wavelength of the radiated
electromagnetic wave becomes larger relative
to the size of the atom. The resultant electric
field in this case becomes as small as approxi-

mately (“—:’-J times the size of the field generat-

ed by the electric dipoles. As radiated energy
is proportional to E? this energy in electric
qguadrupole oscillation or magnetic dipole

2
oscillation becomes approximately ("—c“’) times

smaller than with electric dipole oscillation,
and the lifetime becomes correspondingly
longer. The extremely long lifetime of the for-
bidden transition resulting from electric
gquadrupoles or magnetic dipoles when the
electric dipole transition is forbidden due to
the symmetry of the atom can be understood
in light of these conclusions. In the region of

visible light, the applicable ratio is(“—alj~103;
fo

thus this effect lengthens the lifetime by 6 to 7
orders of magnitude, which brings the lifetime
of excitation by the forbidden transition up to

nearly 1 second. This ratio is (“—c@] ~107 for
microwaves, extending the magnetic dipole
transition lifetime by 14 to 15 orders of mag-
nitude. The results of these semi-classical
analyses show that the lifetime of the magnet-
ic dipole transition between hyperfine struc-
tures in the microwave region will exceed the
age of the universe (~10* seconds) if no exter-
nal perturbation is applied.

4 Cs atomic spectrum and Ram-
sey resonance

The frequency of the radiation correspon-

ding to the transition of the hyperfine structure
of the cesium atom, used in the current defini-
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tion of the second, is measured using the phe-
nomenon known as Ramsey resonance for
many atomic clocks and for al of the primary
frequency standards. Applying Ramsey reso-
nance is not only an important technique in
cesium atom applications but is also indispen-
sable in the precise measurement of the fre-
guencies of quantum transitions.

Ramsey resonance is induced as follows:
create a constant magnetic field, known as the
C magnetic field, in order to split the degener-
ation of energy levels, thus forcing the atoms
to take a certain state. Irradiate the atoms with
an electromagnetic wave in this state for a
period of time z, wait for time T, and irradiate
the atoms with the electromagnetic wave
again for time z. When allowing the atoms to
interact with the electromagnetic wave in two
separate processes in this manner, the proba-
bility that an atom will undergo a transition to
another state depends not only on the interac-
tion time 7z, but also on the elapsed time
between the repeated interaction processes. A
term resembling the interference term then
appears in the transition probability, and it can
be demonstrated that the quantum transition
becomes extremely sensitive to frequency
change. This is Ramsey resonance. Using
this phenomenon, the central frequency of the
transition can be measured with high preci-
sion.

Before performing the slightly complicat-
ed calculations involved, | will state the
results here beforehand, to clarify the proce-
dure. The probability P that the atom has
undergone a quantum transition after the Ram-
sey resonance processes is expressed as fol-
lows:

P(ry= %Sinzbr[l + cos(e — a3))T | en

Here, wis the frequency of the irradiated
electromagnetic wave, w, is the central fre-
guency of the radiation emitted by the transi-
tion (which can be calculated from the differ-
ence between the energy levels, and b is a
guantity determined by the intensity of the
irradiated electromagnetic wave, which can be

expressed using the Bohr magneton «,, and
magnetic flux density B:

_#aB
b= > 22)
The full width at half maximum of the fre-
guency of the transition probability P given by
Eqg. (21) is

1
Av, = — 23
0= o 23)

In this way, taking large values for the
time interval between the two interaction
processes induced by the irradiation of the
el ectromagnetic wave can significantly narrow
the frequency range in which the transition
occurs. However, it should also be noted that
Eq. (21) is an extremely simplified expression
and isvalid only when the condition

@ — ) << b @9

is satisfied. For a thermal beam standard in
which the atoms are gjected and the electro-
magnetic wave is irradiated at different posi-
tions, this condition is also expressed as fol-
lows:

v-vil _ Lbt

25
Av, I = 25

Here, | is the length of the respective irra
diation region, L is the distance between the
two irradiation regions, and the relation T/z=
L/l and Eg. (23) have been applied. We are
only considering cases in which this simplify-
ing condition holds.

There are several methods for deriving the
probability of Ramsey resonance. One well-
known method uses the density matrixi2;, but
amore direct—and in a sense clearer—method
is presented below, involving solution of the
Schrodinger equation4.

The hyperfine structures can be approxi-
mately expressed in terms of a two-level
model in which a weak interaction exerts a
force on the energy eigenstates. Particularly
for the clock transition of cesium 133, if the
appropriate C magnetic field is imposed and
the direction of the interacting electromagnetic
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wave is correct, it can be assumed that only
the transition between the ground state F=4,
m_=0 and the state F=3, m_=0 applies, and that
no other transition occurs.

Here, denoting the state F=4, m =0 as |¥,)
and the state F=3, m =0 as |¥,), the general
guantum state corresponds to the superposi-
tion of the two states, which can be expressed
by the following state function:

1'/’>=clf';”1>+cz|'/f2) (26)

Here, ¢, and c, are the normalized coeffi-
cients for the superposition. Limiting the
number of states to two can simplify the phase
space to two dimensions, and the states can be
expressed as follows:

I%>=G)J, Iwz>=® @7

The unperturbed Hamiltonian diagonalized
in this two-dimensional phase space for the
states F=4, m =0 and F=3, m =0 is expressed
asfollows:

hf-ay 0
Hy=—
0 2[ 0 %] 28)
On the other hand, the non-diagonal
Hamiltonian perturbation for the interaction
with the microwave is expressed as follows:

2bco8 axJ
29

w0
' 2l 2bcos ot 0

Added together, these two expressions
constitute the Hamiltonian H for an atom
interacting with the electromagnetic wave.
The Schrédinger equation using this Hamil-
tonian is expressed as follows:

cd
""EIW)“HJW) (20)

Substituting the state function described
above into Eqg. (30) and expanding it yields the
following equations for the superposition
coefficients:

d by o .

e %0 L epfa)repianle, G

jdea _ b [exp(-ir) + exp@ian)] e, + 2 ¢ (G2)
dt 2 a2

If these equations can be solved to obtain
the time dependencies of ¢ and c,, the transi-
tion probability can be calculated. It should
be noted when solving these equations that the
elapsed time for the atom in the traditional
sense (related to H ) should be distinguished
from the elapsed time for the interaction with
the electromagnetic wave (related to H ).
Denoting the former by t and the latter by g,
the time differential applicable to this problem
can be expressed as follows:

d 8 3
aates (33)

Accordingly, the time dependencies of c,
and c, can also be separated into two parts:
one part depending on t and one part depend-
ing ong. Particularly in this case, parts
depending on't are considered to correspond to
energy eigenstates, which are expressed as exp
(xiwt/2), and these are multiplied by the per-
turbation terms, which are functions of 4.
Denoting these perturbation terms asy, and y,,
¢, and c, can be rewritten as follows:

a(t.0)= 1 (0)esp " 34)

.0)r,0)e 2| 69

Substituting these into Egs. (31) and (32)
givesthe following equations for y, and »,:
iayl Qy b

N _$9, b 36
a0 2 Nt 36)

i% 2 2

-2 37
29 21T 3 (37

Here Q_ isthe quantity defined as follows:
Qy = (38)

Egs.(36) and (37) are approximated
expressions obtained neglecting the terms
depending on 2w. In a more strict treatment,
this term will give rise to a high-frequency
term of 2w in the solution, but it is understood
that in such treatment the amplitude is negligi-
blly small. Treating this term as of negligible
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significance simplifies the calculation as illus-
trated below.

As shown in Egs.(34) and (35), , and y,
express the states of the system. The time
evolution of this system during #is formally
expressed in the matrix expression as follows:

71(9+90)J - Mg (}’1(&3)} 39
(72(9+90) @ r2(6) G

Here, the matrix M® (#) is obtained as the
solution of Egs.(36) and (37). The superscript
k represents the applicable step of the interac-
tion procedure. As stated at the head of this
section, Ramsey resonance is observed
through three steps: irradiation of the electro-
magnetic wave for time z, suspension of the
electromagnetic wave for time T, and irradia-
tion of the electromagnetic wave again for
time z. Thus, k can takeavalueof 1t0 3. Let
us remember that we are now assuming that
the approximation of Eqg. (24) holds when
there is an interaction with the electromagnetic
wave. Then, for k =1 and k = 3, Egs.(36) and
(37) can be approximated as

b

) -
08\ y, o [\

The solution of this equation is expressed
in the matrix expression as follows:

ol ©

b6
MY(G) =25} g)=exp—i b 2 @D
LA
2

When the even and odd-order terms of the
expanded power series are separated and
rearranged using

0-:'2_-10 "
-i 0) {0 -1 @2

the result is the following expression:

br .. bt
COS‘*{ —IS]HT_{
(S) I .
MY =pP = b b | 43

—isin—  CcpS—
2 2

For k = 2, there is no electromagnetic
wave to interact with, thus b = 0, which
changes Egs.(36) and (37) into the following
form:

2y

0
0 }’1J 7 [71}
i— = 44
69(}’2 0 _& Y2

2

The diagonal matrix can be integrated
immediately and the solution is

iQ,T 0

€X 5
MP= . @5)
0 exp%

Using the results obtained above, assum-
ing an initial state asc= 1 and ¢,= 0, the state
obtained after irradiating the electromagnetic
wave for time z, waiting for time T, and irradi-
ating the electromagnetic wave again for time

riscaculated as

(7’1 (r+T+ 'r)] - M(3}(TW(2}(TW(])(T(;J (46)

yy(z+T +7)

Substituting Egs.(43) and (45) into this
equation gives the following result:

}’2(?+T+r):—isinb'rcos£2—2°—T- @7

Using this, the probability is calculated
with

P(t)=| ry(z+T+0) (48)

to give
P(r)= % sin? b7(1 + cos Q2,7) (“9)

which has already been presented.

As shown here, when there is a diagonal
Hamiltonian corresponding to the energy lev-
els and there is also a non-diagonal weak per-
turbation, then if the atoms are prepared to
take the same state, the application of the per-
turbation twice (with a period of time between
applications) generates a cosine term whose
phase is proportional to the product of the
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time interval and the difference between the
perturbation frequency and the resonance fre-
quency. This is Ramsey resonance. In this
case the difference between the perturbation
frequency and the resonance frequency can be
measured with extremely high sensitivity by
making the time interval for the perturbation
large.

The result obtained in Eq. (49) is only
valid under the approximation of Eq. (24).
The result gradually changes as the difference
between the perturbation frequency and the
resonance frequency increases. Further, in
practice, the atoms in the atomic beam have
various velocities, and the transition probabili-
ty is expressed as

P= % _[:f(r) sin? b7l + cos{w - @, )T] dr (50)

Here, f(z) represents the normalized inter-
action time for the atom. For thermal beam
standards, if the velocity distribution function
p(v) is given, noting that v = |/z, this normal-
ized interaction time is expressed as

T

f(r)=;‘}P[i] 1)

In this way, the Ramsey resonance signa
actually observed does not behave exactly as
expressed in Eq. (49) for various reasons,
except when w is extremely closeto w . Fig-
ure 6 shows the Ramsey resonance signal
obtained from our optically pumped primary
frequency standard CRL-O1.

5 Conclusion

Atomic frequency standards are one of the
most precise measurement instruments in use,
measuring the quantities of time and frequen-
cy with significant figures of 14 to 15 orders
of magnitude.

The principles of operation of these stan-

0.3 T T T T

CRL-O1 Ramsey Signal

02 E

Relative Signal

0.1 L . I " L 1
-200 -100 0 100 200

Relative Freaquency(Hz)

Ramsey resonance signal obtained
from the CRL-O1 optically pumped
primary frequency standard

dards are based on extremely advanced mod-
ern physics, including electromagnetics and
guantum mechanics. | recognize that the phe-
nomena studied in modern physics have been
tested strictly, and obtained greater reliability,
in turn leading to the exceptional accuracy of
atomic frequency standards. In this report |
have attempted to describe some of the ele-
mentary physics required to understand the
operational principlesinvolved.

The topics discussed here are limited to
atomic energy levels, emissions and lifetime
in quantum transitions, and the Ramsey reso-
nance, but even this limited discussion leaves
out a great deal. | hope nevertheless that it
will be of some help in permitting the reader
to grasp the phenomena intuitively, to gain an
understanding of approximate quantitative
evaluation, and to pursue more detailed
research on the subject. Please see Reference
(141 for a description of the structure of the
cesium primary frequency standards and of
the various frequency shift factors. | hope
later to have the opportunity to address these
and other issues that could not be discussed
here, as well as to introduce a more advanced
and detailed description of the relevant phe-
nomena.
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[Apology and correction]
In this paper, a misprint of the unit in a figure was found in "2 Atomic spectra and energy levels." The misprint appeared in a
lower part of Fig.2 (Energy levels of the cesium atom: fine and hyperfine structures), which is on the right-hand side in Page
35. The erratum in the figure is already corrected.

(error) 9192631 770MHz — (correct) 9 192 631 770Hz

We sincerely apologize for that erratum and take this opportunity for correction. (October 31, 2017)
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