
35NAKAMURA Goichi et al.

1 Introduction

Although various factors contribute to
breaches of computer security, one of the
major causes is found in latent vulnerabilities
within the programs themselves. These vul-
nerabilities often lie in program structures that
cause the phenomenon referred to as “buffer
overflow”. So-called “security holes” caused
by buffer overflow often lead to serious dam-
age, such as the execution of arbitrary code by
attackers.

Simply put, in buffer overflow, data over-
flows into (i.e., is written to) an area not
intended by the developer (programmer) to
house this data. This phenomenon mainly
occurs during execution of C programs.

The most popular software description lan-
guages today are the C (including C++) lan-
guage and Java. With Java, type safety has
been taken into consideration since the design
stage. Issues such as detection and prevention
of buffer overflow are addressed through the
design and implementation of virtual
machines (bytecode verifiers, in particular)［1］.
In fact, Java programs rarely cause security

holes due to buffer overflow. In contrast, C
programs are likely to cause buffer overflow
due to their runtime data configurations,
which may lead to serious security problems.

Even if a C program contains a latent ele-
ment of code that can cause buffer overflow,
actual buffer overflow occurs depending on
input to the program during execution. In this
study, we developed a static analysis algo-
rithm and tool to detect program structures
that may cause buffer overflow, as opposed to
dynamic monitoring of program execution to
detect buffer overflow that happens to occur at
that time.

2 About buffer overflow

A variety of information-security issues
have recently grown more pressing, from
hacking to computer viruses to information
leakage and webpage tampering. Factors con-
tributing to these problems are mainly classi-
fied into those related to organizational man-
agement (such as lack of security policies or
management); factors related to system man-
agement (such as improper system/network

2-4 Buffer-Overflow Detection in C Program
by Static Detection

NAKAMURA Goichi, MAKINO Kyoko, and MURASE Ichiro

Buffer_overflow is the most dangerous vulnerability implicit in C programs. whether a
Buffer_oveflow emerges or not in the program runtime, is depend upon inputs of the C program.
We developed algorithms and tools to detect buffer_overflows, not accidentally partial detection
by monitoring program runtime situation, but exhaustively detection by static-analysis of C
source code before the program run. The exhaustively detection is the detection of, not only the
source code position where a Buffer_overflow emerges, but also the essential source code
structure makes the Buffer_overflow vulnerability.

Keywords
Buffer_overflow, Static analysis, Vulnerability detection

36 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

settings or operations); and latent vulnerabili-
ties within individual software programs (such
as buffer overflow and memory leakage). The
issue of software vulnerabilities is the most
significant factor, as these vulnerabilities are
difficult to detect and may cause information-
security problems despite measures taken in
organizational and system management.

Buffer overflow is the latent software vul-
nerability of greatest concern today. A soft-
ware program with potential for buffer over-
flow may allow an attacker to interfere with
normal operation, or, in the worst case, to take
over the program’s processes. In fact, buffer
overflow is the number-one cause of reported
problems.

2.1 Buffer overflow occurrences found
in vulnerability reports

According to websites that list reports on
software vulnerabilities, such as the CVE
(http://cve.mitre.org/cve/downloads/full-
cve.html) and ICAT (http://icat.nist.gov/icat.
cfm) sites, buffer overflow makes up a consid-
erable percentage of causes of reported vul-
nerability incidents. For example, the follow-
ing table shows the data available to the public
at these websites as of May 2004, illustrating
total number of reported vulnerability inci-
dents and the number of incidents caused by
buffer overflow.

These vulnerability reports show the fol-
lowing trends:

• Reported incidents are mainly classified
into two categories: vulnerabilities
caused by internal program defects such
as buffer overflow, and vulnerabilities
caused by improper program settings or
operations.

• Buffer overflow is by far the most fre-
quent cause of reported incidents,

accounting for about 30% of the total.
This has been the case for the past few
years.

• Other major internal program defects
include format string bugs, memory leak-
age, and cross-site scripting. However,
reports of these incidents are fewer than
those involving buffer overflow.

• Since 2000, the total number of reported
incidents has been increasing along with
the proportion of buffer overflow, with
additional reports on incidents caused by
new types of vulnerabilities such as
cross-site scripting.

Judging from these trends, it is clear that
buffer overflow represents a serious internal
program defect.

2.2 Types of buffer overflow
The term “buffer overflow” is used mainly

in two senses. In this R&D project, we have
treated these concepts separately as “stack
overflow” and “buffer overflow (general)”.

• Stack overflow: This type of buffer over-
flow may allow attacks in a process
known as “stack smashing”. Memory
features an area for critical data generat-
ed during execution, and user programs
must not write data to this area. Howev-
er, due to a certain program structure,
data may be written to this critical area
under instructions to write to an ordinary
data area. In this situation, attackers
could alter the critical data to an arbitrary
data in order to take over the program
process. We refer to this program struc-
ture as “stack overflow vulnerability”.

• Buffer overflow (general): In a broader
sense, buffer overflow is a phenomenon
in which, under instructions from a user
program to write to or refer to an ordi-
nary data area, data is written to (or the
reference is made to) this area and anoth-
er area at the same time. The effects of
such an incident range from an inability
to run the program properly to process
takeover.

We use the phrase “buffer overflow” to

Table 1 Number of reported buffer over-
flow incidents

37NAKAMURA Goichi et al.

refer to the latter category.

2.3 About languages
Although various program description lan-

guages are available, today the C language,
Java, and other script languages are the most
common, especially within the kinds of net-
work software that are most often targets of
attack. The C language has the following char-
acteristics:

• Since this language has been used for
many years, C programs account for a
large proportion of programs developed
worldwide to date. Vulnerabilities latent
in these existing programs pose a serious
threat of buffer overflow.

• C is still used as a major programming
language to develop C programs. These
programs may also have the potential for
buffer overflow.

• Since the C language was developed
based on the assignment of highest prior-
ity to execution speed, it is inadequate in
many aspects of security. C programs are
highly likely to cause buffer overflow
due to their runtime memory configura-
tions and execution control methods. In
other words, simply programming in the
C language is likely to create the poten-
tial for buffer overflow.

In contrast, with Java, type safety has been
taken into consideration since the design
stage. Issues of buffer overflow are addressed
through type verification of virtual machine
bytecode［1］. In fact, Java programs rarely lead
to security holes simply due to buffer over-
flow. Even if there are latent vulnerabilities in
Java programs, the threat of such vulnerabili-
ties is negligible, in part because these account
for a much smaller proportion of accumulated
programs relative to existing C programs.

2.4 Subjects of this R&D
As described above, it is clear that when

conducting R&D to address software security
holes, it is important to focus on C programs
and buffer overflow.

We have already presented a method for

static detection of stack overflow［2］［3］. In this
paper, we will describe a method for static
detection of buffer overflow (general).

3 Existing methods for detecting
buffer overflow

3.1 Methods for replacing standard
library functions

Some standard library functions (such as
strcpy) are found to cause buffer overflow.
Avaya Labs’ LibSafe［4］and several similar
tools search source code for these functions
and replace them with safer ones. This method
has one disadvantage, as follows:

• Inability to deal with user-programmed
segments: These tools are designed to
find certain standard library functions
that through repeated use may cause
buffer overflow, but not to detect buffer
overflow attributed to segments pro-
grammed by the user.

Therefore, if it is necessary to detect buffer
overflow in programs including user-pro-
grammed segments, these tools are far from
adequate. However, replacement of dangerous
functions in standard libraries is the minimum
requirement for elimination of vulnerabilities
in programs.

3.2 Dynamic detection
A method/tool that dynamically detects

buffer overflow performs the following: (1)
modification of a processing or compiled pro-
gram such that dummy data of a given value is
placed at pivotal points (such as those close to
an area allocated for program execution) in
memory; (2) constant monitoring to determine
whether this dummy data is altered during
program execution; and (3) if this data is
altered, the user is notified of the possibility
that buffer overflow has occurred. StackGuard
is a common tool of this type［5］. This type of
dynamic detection tool is the most popular
among measures against buffer overflow. The
world’s largest software vendor has
announced that it will incorporate this dynam-
ic detection capability into the next version of

38 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

its program development environment.
Since this dummy data is generally called

“canary” data, we refer to the method of
inserting this data as a “canary method”
below. Although dynamic detection methods
do not have the disadvantage of an inability to
deal with user-programmed segments, they do
feature the following disadvantages:

• Decrease in execution speed: Program
execution speed is significantly reduced
by the constant monitoring to determine
whether the canary has been altered. This
contradicts the design philosophy of the
C language, which places a higher priori-
ty on processing speed than on program
security. Even though this tool can be
used at the debugging stage, the decrease
in execution speed is undesirable in actu-
al operation.

• Incomplete detection: Dynamic detection
of buffer overflow entails the detection
of buffer overflow that has already
occurred due to specific input to a pro-
gram. This method is not designed for
comprehensive detection of buffer over-
flow points and conditions (such as dur-
ing program input). It is virtually impos-
sible to prevent buffer overflow com-
pletely using a canary method/tool in
dynamic analysis. Even with repeated
debugging of a program using this tool,
eliminating buffer overflow case by case,
there is no theoretical guarantee of
improved program security.

• Insufficiency of information: This tool
can detect the occurrence of buffer over-
flow, but cannot detect the program
structure that caused it. Since informa-
tion on the program structure is essential
for modification of the program, the
absence of this information puts pro-
grammers at a serious disadvantage.

• Problem caused by insertion of the
canary itself: In the case of detection of
stack overflow (a type of buffer overflow
described above), it is important to deter-
mine whether data is written to a critical
area in memory. However, the position of

this critical area is shifted due to the
insertion of the canary into the program.
As a result, it is likely that this tool can-
not detect stack overflow that would
occur in the same program in the absence
of a canary.

These disadvantages are inherent in
dynamic analysis. To avoid them, static analy-
sis is required. As a side note, the typical
“Purify” memory-check tool can also be used
in dynamic detection of buffer overflow,
though no canary data is used.

3.3 Detection through static analysis
LCLint［6］, a static analysis tool, uses

source-code comments to detect points of
buffer overflow occurrences. This tool has the
following disadvantage:

• Difficulty of creating additional informa-
tion: To perform static analysis with this
tool, the programmer has to add informa-
tion other than source code to various
sections. This method is effective if the
added information is correct. However, it
is an onerous task to insert accurate
information in this manner, especially in
the case of a large program.

Since LCLint is designed to analyze spe-
cific functions, its ability to detect points of
buffer overflow occurrences is limited.

Under one proposed method of detecting
points of buffer overflow occurrences, opera-
tional meaning is assigned to a machine lan-
guage and the extracted machine language
code is then interpreted［7］. However, to deter-
mine behavior or functionality given certain
meanings within a machine language, static
analysis must be executed on a large scale.
This is unrealistic in light of detection accura-
cy and amount of time required for analysis.
Moreover, this method has the disadvantage of
providing insufficient information: even if this
tool can detect cases of buffer overflow, it is
extremely difficult to isolate a program struc-
ture that may cause buffer overflow.

39NAKAMURA Goichi et al.

3.4 Detection through pattern match-
ing

Pattern matching is commonly used to
detect virus code. A buffer overflow occur-
rence is simply an assignment statement or
reference. Whether this assignment statement
or reference causes buffer overflow depends
intricately on the portion of code located
before the statement or reference. Therefore, it
is difficult to detect points of occurrence and
program structures comprehensively using
pattern matching or rule-based analysis. These
methods thus present the disadvantage of
incomplete detection.

4 Detection through static analy-
sis of C source code

4.1 Requirements of detection meth-
ods

Based on the above discussion, we can
summarize the requirements of measures
against buffer overflow as follows:
(1) Detection of buffer overflow in user-pro-

grammed segments (segments pro-
grammed by the user, aside from library
functions)

(2) Detection of buffer overflow by static
analysis of a program before executing,
instead of detection during execution

(3) Thorough detection of elements that may
cause buffer overflow—i.e., ensuring com-
plete detection with no omissions

(4) To allow detection results to be used in
program modifications, establishment of a
buffer overflow structure that consists of
the following:
• A data area in which buffer overflow is

likely to occur
• Elements within this data area (state-

ments) that are likely to cause buffer
overflow

• Conditions leading to actual buffer over-
flow

(5) Direct analysis of source code, without
required addition of comments or other
descriptions

(6) Use of a detection algorithm, not pattern

matching or rule-based analysis

4.2 Overview of detection algorithm
The occurrence of buffer overflow

depends on the size of data arrays or pointer
areas allocated by “malloc” memory alloca-
tion functions or other functions, as well as on
the indices for access to these arrays and to the
pointer areas in the body of the program (e.g.,
given expressions such as “a[i]” and “*(p+i)”,
what is the value of variable “i” and which of
these arrays and pointer areas are indicated by
variables “a” and “p”?). To identify these
items, we have modified a method of defini-
tion-use analysis used by ordinary compilers.

It is most important to ensure complete
detection, as mentioned in Section 4.1(3), in
addition to verifying validity (all detected ele-
ments must have the potential to cause buffer
overflow—no false detection is tolerable).
Although it is possible to identify all elements
that have the potential for buffer overflow,
buffer overflow actually takes place only if cer-
tain conditions are met; overflow does not hap-
pen at many points. Therefore, even though it is
relatively easy to ensure complete detection, it
is also necessary to ensure the validity of detec-
tion by determining the relevant points of
occurrence as well as the conditions of actual
buffer overflow at each of these points. To help
ensure the validity of detection, this algorithm
analyzes not only potential buffer overflow
points but also the conditions of actual occur-
rence based on the structures of the transitions
between blocks. Figure 1 shows an overview of
this detection algorithm, which meets all of the
established requirements of detection methods.

4.3 Detection tool
We implemented this detection algorithm

as a tool. Detection results were obtained in
the form of a buffer overflow structure, as
mentioned in Section 4.1(4). C language
macros and included files must be expanded
through preprocessing before static analysis
can be performed. Therefore, this detection
tool uses C source code that has been pre-
processed.

40 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

4.4 GUI and experiments
Since a buffer overflow structure is fairly

complex, it is not appropriate to display it to
the user in string format. We thus created a
GUI to allow the user (i.e., the programmer) to
use this data in easy debugging to eliminate
buffer overflow structures. This GUI displays
a number of the components of the buffer
overflow structure: the “Potential area of
occurrence”, a data area in which buffer over-
flow may occur; “Potential points of occur-
rence”, points (statements) within this data
area that may cause buffer overflow; and
“Conditions of occurrence”, conditions relat-
ing to actual buffer overflow events.

It is obvious that the relationship between
a “Potential area of occurrence” and “Potential
points of occurrence” is usually one-to-many.
Conditions of actual buffer overflow vary at
different locations (within the control
sequence) before a “Potential point of occur-
rence”. Therefore, the relationship between a

“Potential point of occurrence” and “Condi-
tions of occurrence” is also one-to-many. This
GUI allows the user to view these items in an
easy-to-read format based on mouse-click
operations. We have been conducting experi-
ments on the detection of buffer overflow
using available source code from programs
with buffer overflow structures reported in
books on C language or in vulnerability
reports. To date the newly developed tool has
been shown to detect buffer overflow within
practical analysis times while meeting the nec-
essary requirements of detection methods,
including demands of completeness and valid-
ity.

5 Conclusions

Buffer overflow is the most dangerous
latent software vulnerability. We have catego-
rized buffer overflow into two types: specific
phenomena and general buffer overflow. To

Fig.1 Overview of buffer overflow detection algorithm

41NAKAMURA Goichi et al.

address the latter, we developed a static analy-
sis algorithm and tool for the thorough detec-
tion of structures in C programs that may
cause buffer overflow.

Going forward, we will conduct research
on the application of this algorithm and tool to

C++ and other languages susceptible to buffer
overflow. We will also work on the develop-
ment of methods of static analysis to detect
memory leakage and other potential software
vulnerabilities.

NAKAMURA Goichi

Mitsubishi Research Institute, Inc.

Information Security, Quantum Com-
puting

MURASE Ichiro

Mitsubishi Research Institute, Inc.

Information Security

MAKINO Kyoko

Mitsubishi Research Institute, Inc.

Information Security

References
01 Hagiya, M., “About A New Data_flow Analysis for Java Virtual Machine Procedure”, First Workshop on

Programing and Apllication_systems, Japan Society for Software Science and Technology, 1998.

02 Nakamura, G., et al., “Buffer_overflow Detection in C Program by Static Analysis”, Special Group on Pro-

gramming in Information Processing Society of Japan, Jun. 2002.

03 Nakamura, G., et al., “About Buffer_overflow Detection by Static Analysis”, Special Group on Computer

Security in Information Processing Society of Japan, Jul. 2002.

04 AVAYAlabs LibSafe:http://avayalabs.com/project/libsafe/.

05 Eto, H., et al., “propolice-Improvement of detection of Stack-Smashing-Attack”, IEICE ISEC2001-42,

2001.

06 Larochelle, D. and Evans, D., “Statically Detecting Likely Buffer Overflow Vulnerabilities”, 2001 USENIX

security symposium,Washington D.C., Aug. 1996.

07 Xu, Z., Miller,B.P., and Reps, T., “Safety Checking of Machine Code”, proceedings of the conference on

programming language design and implementation, June 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

