
53KAMIO Masakazu et al.

1 Introduction

The growing development of computer
networks has been accompanied by an
increasing number of victims of illegal access
and computer viruses or worms［1］. To prevent
these incidents, it has become commonplace
to use firewall and “vaccine” software pro-
grams. More recently, security measures have
included network-level monitoring or
alliances with security equipment, using intru-
sion detection systems (IDS) and intrusion
prevention systems (IPS). However, given that
the number of victims is still on the rise, it is
clear that these measures are not fully effec-
tive in preventing such incidents. In addition
to taking protective measures against intru-
sions, it is necessary to check continuously for
anomalous events and to respond accordingly.
However, the greater use of computer net-
works has led to an increase in the number of
nodes and in the complexity of network con-
figurations. For large organizations operating
in geographically dispersed locations, it is
becoming difficult to check the various nodes
that make up the computer network. This

checking and analysis is now largely depen-
dent on the advanced skills of network admin-
istrators. However, it is not always possible to
hire sufficiently capable administrators. More-
over, if a computer network consists of geo-
graphically dispersed sub-networks, a differ-
ent administrator must be assigned to each
location.

These problems have recently been
addressed by technology developed for the
efficient management of multivendor comput-
er networks, such as Web Based Enterprise
Management (WBEM)［2］［3］and Application
Resource Management (ARM)［4］. This tech-
nology is effective in managing various
machines within an organization, but this
highly integrated mechanism may not be used
for central management of networks operated
by different organizations. This is mainly
because the respective organizations are
unable to cede network management authority
to third parties.

However, we believe that it remains possi-
ble to establish loosely knit coordinated rela-
tionships in which organizations can exchange
the appropriate messages or inquiries upon

2-6 Log Management System Based on Dis-
tributed Database Using P2P Network

KAMIO Masakazu, ISHIDA Tsunetake, and HAKODA Takahisa

It is necessary to investigate the phenomena in order to perform the countermeasures to ille-
gal access on computer network, and it is aimed against the logs from network nodes. Now
these investigations and analysis greatly depend on network administrators with advanced tech-
nology. But the number of the nodes is increasing along with the computer network expansion,
and the investigations are becoming more difficult. So we are researching and developing the
log management system based on the distributed database, which enables efficient log manage-
ment and analysis under the large-scale network environment.

Keywords
Agent technology, Distributed computing, Peer-to-Peer, Management

54 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

detection of an anomaly. We have been work-
ing on R&D of a log collection/management
system that consists of multiple, disparately
located servers that feature log collection/man-
agement and anomaly detection functions.
Upon detection of an anomaly at one server,
the other servers will search for and provide
related information and log data［5］-［7］.

In this paper, we will describe the concept
of a log collection/management system that
coordinates log collection/management
servers. We will also describe a statistical
method for detecting anomalies in collected
logs, a fast pattern matching method using
automatons, and a P2P (peer-to-peer) protocol
for flexibly coordinating log collection/man-
agement servers.

2 Studies on configuration

2.1 Size and configuration of networks
This log collection/management system is

intended to adapt flexibly to a wide range of
networks: from a small network featuring a
single sub-network consisting of less than 20
nodes to a large network of sub-networks
operated by different organizations. First, we
focused on various network sizes and suitable
configurations for each.

First, we classified computer networks
based on the sizes shown in Table 1 and inves-
tigated system configurations suitable for each
environment.

A small computer network is a single net-
work consisting of less than 20 nodes operated
by a single organization. Since the amount of
collected logs is small and log transmission
traffic is low in such an environment, log col-
lection and management is appropriately con-

ducted by one server.
A medium-sized computer network con-

sists of several small sub-networks operated
by a single organization. If a single server col-
lects logs in such an environment, traffic will
increase with increasing proximity to the serv-
er, which may place considerable load on the
network. Moreover, with an increase in the
amount of logs concentrated in a single server,
storage space and processing capacity may
become insufficient. To prevent this and relat-
ed problems, the log collection/management
function should be distributed among the sub-
networks, with central control of their opera-
tions. In other words, a hierarchal system con-
figuration is most appropriate for a medium-
sized network.

A large computer network consists of sev-
eral small or medium-sized sub-networks oper-
ated by different organizations. In such an
environment, each organization operating a
sub-network must collect and manage logs on
its own. The centrally controlled configuration
used in a medium-sized network is not suitable
for a large network. However, when an anom-
aly occurs in a sub-network, the search for rel-
evant information must extend to all sub-net-
works, as all of these networks are linked. To
meet these requirements, a multi-agent system
configuration is required in which each log
collection/management server collects logs
from its own sub-network nodes, coordinating
with the other servers as necessary.

Table 1 Classification by size of network

Fig.1 Suitable configuration based on
network size

55KAMIO Masakazu et al.

In short, log collection/management sys-
tems must operate according to the network
size and configuration. However, it is possible
to implement the above-mentioned single-
server and hierarchal system configurations as
variations of the multi-agent system configu-
ration shown in Fig.1.

Figure 1 (a) shows a multi-agent system
configuration in which log collection/manage-
ment servers coordinate at a single level. In
Fig.1 (b), log servers are placed within a tree
structure. In this way, a layered system configu-
ration for a medium-sized computer network
can be implemented as a variation of the multi-
agent system configuration. As shown in Fig.1
(c), a single-server configuration can be imple-
mented in the form of a sub-network that would
constitute a part of the multi-agent system.

If log collection and management is con-
ducted across several organizations in a large
network environment, the functions of each
log server must be adjusted according to its
relationship with others. For example, a log
server may provide all available log informa-
tion to a node within the same organization,
while limited to returning only information of
presence or absence of the relevant logs to
other organizations. In this case, the multi-
agent system enables the establishment of
policies governing responses to requests from
individual log servers, without the need to
adjust the network configuration. As a result, a
log collection/management system can be
designed more flexibly.

The conclusions described above show
that, based on a multi-agent system that coor-
dinates independent log collection/manage-
ment servers, it is possible to construct a log
collection/management system adaptable to
networks of various sizes and configurations.
These log servers can switch autonomously
among policies—according to the internal or
external nature of communications, for exam-
ple. These servers can thus coordinate effec-
tively regardless of the network configuration.

2.2 Log collection/management servers
We then proceeded to a study of servers

used for log collection and management.
A log collection/management server must

collect logs from various nodes such as appli-
cation servers, routers, switching hubs, fire-
walls, and IDSs. Formats of collected logs
also vary: the “system logs (syslogs)” com-
monly used by UNIX systems, the “Event
Logs” used by WindowsNT, the “SNMP (Sim-
ple Network Management Protocol)” often
used by routers and switching hubs, and email
used by IDSs to notify administrators. In addi-
tion, some nodes need to employ original log
formats. Obviously, a single log sever cannot
handle all of these formats; the range of
receivable log formats or protocols must be
expandable. Two methods are available to
extend this range: (1) definition of new log
formats or protocols for log collection/man-
agement, and installation of agents at the
appropriate nodes to collect these logs; and (2)
as necessary, enabling the specification of
additional log formats or protocols receivable
on the log collection/management server side.
With method (1), it is possible to accommo-
date new log formats or protocols by develop-
ing agents at the new nodes required to collect
these logs, eliminating the need to make
changes to the rest of the network. However,
in some cases it is not possible to install addi-
tional programs (i.e., agents) on certain nodes.
We thus decided to use method (2) to extend
the range of collected log formats or proto-
cols.

To help network administrators check and
analyze logs, this log collection/management
system must be able to check collected logs
and detect anomalies automatically. Further, to
collect and manage different log formats, this
system needs be able to: (1) add checking
functions according to log formats; and (2)
check across logs and logs of multiple for-
mats. We believe that function (1) will allow
servers to provide flexible checking functions
according to the managed log formats, and
that function (2) will allow servers to detect
anomalies more effectively by evaluating mul-
tiple events—for example, by comparing the
detection results collected from different

56 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

nodes through IDSs and those of syslogs from
servers.

This system makes it possible to extend
the range of receivable logs as necessary.
However, since log checking functions are
dependent on receivable log types, it is unlike-
ly that previously implemented log checking
functions can be used to check newly added
log formats. Therefore, when extending the
range of receivable logs, it is also necessary to
extend the system’s log analysis functions.

As described above, log collection/man-
agement servers must allow for the easy addi-
tion or modification of functions. To this end,
we designed a group of functional modules
that together make up a log collection/man-
agement server. Figure 2 shows the layout of
this structure.

As shown in Fig.2, a log collection/man-
agement server consists of a number of func-
tional modules. A strong dependent relation-
ship between certain modules renders it diffi-
cult to add, delete, or modify functions flexi-
bly. To reduce dependency and to ensure ease
of addition, deletion, and modification of
functions, we divided the server into layers
and set up a common interface between the
layers.

We designed the server to consist of three
layers: (1) an external interface section in
charge of external communications, such as
reception of logs from other nodes, coordina-
tion among servers, and conversion of internal

and external data formats (for communication
with other nodes); (2) an internal processing
section in charge of analyzing received logs,
checking relations among accumulated data
items, and generating messages to initiate coor-
dination upon detection of anomalies; and (3) a
concealed database section that features a hid-
den database for storing received logs and pro-
vides a common interface to upper modules.

3 Proposed system

3.1 Log collection/management server
Figure 3 shows a specific configuration of

a log collection/management server. We will
use this figure to describe how the server
works.

The three-layered rectangle in the center
of the figure represents the log
collection/management server. Outside this
log server, there are nodes to be managed for
log collection, other log servers for the exter-
nal interface, and a user interface for server
management. As described above, a log server
consists of the external interface, internal pro-
cessing, and database sections (layers). These
sections (layers) include functional modules of
the log server. Arrows in the figure indicate
the flow of log data from reception to storage
in the database (Logs), data related to check-
ing and analysis within the server (Internal
messages), and data related to coordination
with other servers (Cooperation messages).

Fig.2 Conceptual Diagram of log collec-
tion/management server configu-
ration

Fig.3 Configuration of log
collection/management server

57KAMIO Masakazu et al.

3.1.1 External interface section
The external interface section includes

modules for reception of logs and coordina-
tion with other log servers and user interfaces.
Each log reception module receives logs in a
specific format and converts the format for use
inside the server.

The internal message reception and result
notification modules control the flow of data
between the external interface and internal
processing sections. This helps ensure the
independence of these two sections.
3.1.2 Internal processing section

Received logs are passed to anomaly
check modules in the internal processing sec-
tion. After checking is finished, these logs and
the check results are entered in the database
(indicated by arrows labeled “Logs”). It is
possible to set up a separate module for each
log type. It is also possible to associate a log
type with two or more detection methods. In
this case, several types of check results are
linked to a given log.

The anomaly check modules check
received logs for anomalies before the logs are
stored in the database. In addition, the relevant
anomaly check module checks logs that were
received at different times or from different
nodes (indicated by arrows labeled “Internal
messages”). These check results are monitored
by the relevant modules. To check more
extensively, requests for the relevant informa-
tion are sent to the other log servers as neces-
sary (indicated by arrows labeled “Coopera-
tion messages”).
3.1.3 Database section

The bottom layer of log collection/man-
agement is formed by a database that stores
received logs and check results. To ensure that
the database is scalable, between the internal
processing section and database, we installed a
DB management module that hides the data-
base system and provides a common interface
with the internal processing section.

3.2 Coordination functions
This is a multi-agent distributed system in

which log collection/management servers act

as agents. The system is designed to coordi-
nate computer networks operated by different
organizations. We devised a P2P-based coor-
dination scheme because a P2P network
enables easy installation of agents, regardless
of the overall network structure.

In this scheme, log collection/management
servers operate as follows. First, each log col-
lection/management server selects several
neighboring log servers and establishes com-
munications. When a log collection/manage-
ment server detects an anomaly through its col-
lection and analysis of logs, it will issue notifi-
cation and a request for the relevant informa-
tion to the neighboring log collection/manage-
ment servers in a peer-to-peer fashion. Upon
reception of this message, the other log servers
will check their stored logs, and any log data
judged as related to the anomaly will be
returned to the source (server). In addition, the
servers will forward this message to all neigh-
boring log collection/management servers
except the log collection/management server
that issued this message. This procedure is
repeated to check logs throughout the network,
as shown in Fig.4.

In the figure, for example, LS1 communi-
cates with LS2 and LS3, and LS2 communi-
cates with LS1, LS21, and LS22. When LS1
sends a message to LS2, LS2 will forward this
message to LS21 and LS22. In this way, LS1
can coordinate with LS21, LS22, and the other
log servers with which LS1 does not have
direct communication.

However, in a loop structure in which

Fig.4 Coordination of log
collection/management servers

58 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

neighboring log servers communicate with
one another, message transmission overlaps,
generating unnecessary traffic. In the case
shown in Fig.4, for example, when LS21 and
LS22 receive a message from LS1, each will
send this message to the other. Gnutella［8］, a
typical P2P protocol, prevents an increase in
traffic to a certain extent by discarding over-
lapping messages, but traffic still increases in
proportion to the square of the number of
nodes involved, placing pressure on the net-
work bandwidth. Chord protocol［9］, which
employs P2P in distributed databases, pre-
vents an increase in traffic by adjusting data
locations and search procedures using the
flexibility of the P2P network. However, this
system requires a protocol that can broadcast
messages (like Gnutella) throughout the sys-
tem, as log locations are unknown in this sys-
tem. Moreover, since Chord does not take
bandwidth or route status into consideration,
low-speed routes may be selected to send a
given message. To coordinate among log col-
lection/management servers, we devised a P2P
protocol that is able to optimize communica-
tion routes among neighboring nodes. Fig.5
shows the route control method using the P2P
protocol we have devised.

In Fig.5, a node A communicates with
neighboring nodes B and C; and B and C com-
municate with neighboring node D [Fig.5 (a)].
When A sends a message, D will receive this
message from both B and C. In the Gnutella
protocol, node D will discard one of the mes-
sages received from B and C, as described
above. However, the generation and transmis-
sion of such overlapping messages is simply
unnecessary. According to our routing

method, if a node receives the same request
message several times, this node will send a
transmission stop request (OBSOLETE) to
nodes sending the second or later transmission
of this request message. Nodes that receive the
OBSOLETE command will stop sending mes-
sages to the requesting node. For example,
when D receives the same request message
from B and C, D will send the OBSOLETE
command to the node (C in this example) that
sent the message later [Fig.5 (b)]. After
receiving the OBSOLETE command, C will
stop forwarding request messages from A to D
[Fig.5 (c)]. This method prevents subsequent
request message transmissions from causing
unnecessary traffic. Before the OBSOLETE
command is sent, a given message transmis-
sion results in O(n2) of traffic, as in the
Gnutella protocol. After the OBSOLETE
command is sent, traffic caused by a given
transmission will decrease to O(n).

A disadvantage to this method is seen in
that transmissions may be interrupted when
trouble occurs on a node that forwards mes-
sages, as shown in Fig.6.

If trouble occurs at B after the route is
established as shown in the previous figure,
messages will not be sent to D. The detected
trouble of the destination node can be solved
by rerouting messages regardless of the earlier
OBSOLETE command. When attempting to
establish a connection with B, if A finds that
B is unable to forward messages, then A will
send an OBSOLETE cancel request and other
messages (not having been forwarded by B) to
C so that C can forward the messages to D.

The new protocol described above pre-
vents the increase in traffic caused by conven-

Fig.5 Routing method

Fig.6 Rerouting in case of trouble

59KAMIO Masakazu et al.

tional P2P protocols such as Gnutella. This
enables all servers in this log collection/man-
agement system to exchange information and
receive results using the flexibility of the P2P
network—in other words, it enables optimiza-
tion of communication routes.

4 Log checking functions

This system is designed to conduct anom-
aly detection at each of its log collection/man-
agement servers. This system allows for the
use of existing methods, such as detection by
pattern matching, and detection based on traf-
fic patterns collected through SNMP.

Aside from these methods, we devised a
classification method based on the frequency
of occurrence of words within logs and a high-
speed pattern matching method using
automatons. This section will describe these
methods.

4.1 Classification based on the fre-
quency of occurrence of words

This method involves sampling known
logs and classifying them into certain cate-
gories, creating an “occurrence frequency
matrix” that shows which words occur at what
frequencies in each log category. This matrix
can be used as a set of decision functions to
classify newly received logs.

This method enables the creation of decision
functions tailored to individual environments
based on past data. This method thus offers a
number of advantages over pattern matching:
(1) the ability to detect anomalies when a log
server receives unknown logs; and (2) the abili-
ty to create decision functions suited to individ-
ual environments based on sampled logs.
4.1.1 Creation of decision functions

An occurrence frequency matrix consists
of words (in rows) and categories (in
columns), and each element shows the fre-
quency of occurrence of a word in each cate-
gory. A matrix that corresponds to a group of
words is called a corpus. Figure 7 shows the
layout of a corpus.

To create a corpus and decision functions,

the following steps are performed on the user
side: (1) collection and classification of logs
for use as original data; (2) morphological
analysis of the classified log messages to
extract words; (3) elimination of white spaces,
punctuation marks, and character strings that
consist only of numbers; (4) if a word extract-
ed in Step (2) is new, an additional row is cre-
ated to hold this word, and the total for the
number of words (rows) is augmented by one.
If an extracted word is an existing one, the
existing category value is increased by one;
(5) the single value indicated in each of the
columns created in Step (4) is divided by the
number of logs included in that category; and
(6) each element (from the results of Step (5)
is divided by the total for all elements in that
row.

The resultant matrix is used as a set of
decision functions.
4.1.2 Classifying logs

To classify a log, the user performs the fol-
lowing steps: (1) checks whether a word con-
tained in the corpus occurs in the log—if it
does, “1” is written to the location in the cor-
pus corresponding to this word; if not, “0” is
entered; (2) repeating Step 1, vectors of ones
and zeros are created that correspond to the
occurrence or non-occurrence of the words;
(3) these vectors are multiplied by the decision
function vectors; and (4) the element with the
largest vector value as a result of the calcula-

Fig.7 Layout of corpus

60 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

tion in Step 3 is then selected. The number
assigned to this element will correspond to the
number of the category to which this log
belongs.

4.2 Pattern matching by automatons
We devised this method to speed up anom-

aly detection based on log occurrence patterns.
Through parallel operation of several
automatons linked without interruption and
based on the relationships among multiple
logs, we tried to reduce the number of anom-
aly detection checks, and also, to verify sever-
al patterns to increase detection speed.
4.2.1 Configuration and operation of

automatons
As shown in Fig.8, an automaton consists

of several nodes, each representing specific
states. Each node has regularly expressed con-
ditions for a shift to the next state. A log col-
lection/management server passes received
logs sequentially to automatons for verifica-
tion.

An automaton checks logs as follows: (1)
When receiving a log, the automaton will
check whether the log fulfills the conditions
for a shift to the next state. (2) If it does, the
automaton will shift to the next state. (3) A
shift to the final state means that an anomaly
has been detected. In this case, the automaton
will record the related log data and then return
to its initial state. Logs are checked sequen-
tially through repetition of these steps.

It is sometimes appropriate to presume
that logs widely separated in time are not
related. Therefore, we specified a time period
after which logs are discarded. After this peri-
od has elapsed, the automaton returns to its
initial state.

4.2.2 Parallel operation of automatons
The user prepares the necessary number of

automatons according to the desired patterns
to check; these automatons then operate in
parallel.

Figure 9 shows the concept of automatons
operating in parallel. This group of
automatons operates as follows: (1) A log col-
lection/management server passes a received
log to the first automaton [Automaton (0) in
Fig.9]. (2) This automaton checks the log,
shifts its state accordingly, and sends the log
to the next automaton. (3) For each log, Step 2
is performed by all automatons. (4) Each time
a new log is received, Steps 1 through 3 are
triggered.

These automatons are series-linked and
every automaton is always in one of the desig-
nated states. Therefore, the amount of time
required to check a log depends only on the
number of automatons. Since these series-
linked automatons operate in parallel, it is
possible to handle as many logs as the number
of automatons when logs are received in suc-
cession.

5 Implementation

Based on the concept described so far, we
are in the process of prototyping a log collec-
tion/management system. Figure 10 shows the
functions we have already implemented on a

Fig.8 Configuration of automaton Fig.9 Parallel operation of automatons

61KAMIO Masakazu et al.

module-by-module basis.
This prototype uses its reception modules

(for syslog, SNMP, SMTP, and POP3) to
receive syslog, SNMP, and mail logs, and runs
anomaly detection routines for an each log
before storing these logs in its database. At
present, the prototype features only one detec-
tion routine based on the frequency of occur-
rence of words, as described above. However,
the superordinate internal message reception
module allows the user to specify the modules
to be used next. In the future, it will be possi-
ble to tailor anomaly detection routines even
more precisely by selecting the optimal mod-
ule, according to the type of log received.

Upon reception of a log, the relation check
module conducts anomaly detection based on
the reception state of several logs. In this
anomaly detection, automatons perform the
pattern matching described above.

If a log collection/management server
detects an anomaly through any of its detec-
tion functions, the coordination trigger module
located in the database wrapper will decide,
based on the settings, whether or not to start
coordination. If this module decides to start
coordination, it sends a coordination message
to the other log servers. Upon reception of this
message, the other log servers will check their
own databases, and if they find related log
information, they will send it back to the serv-
er in which the anomaly was detected. In addi-
tion, they will forward this message to all
neighboring log servers except the log server

that issued this message. In this way, network-
wide coordination is achieved through the pro-
tocol described in 3.2, “Coordination func-
tions”.

6 Results and discussion

We checked the operation and evaluated
the performance of the implemented func-
tions. This section will briefly describe our
test results.

We measured traffic when the new P2P
protocol was employed, and compared this
protocol with Gnutella based on the following
prediction: before the OBSOLETE command
is sent, message transmission will cause O(n2)
of traffic (as in the case of Gnutella); after the
OBSOLETE command is sent, traffic will
decrease to O(n), as the transmission route
will then feature a theoretical tree structure.

Figure 11 shows the results of traffic mea-
surement. As we predicted, prior to route con-
trol message transmission results in nearly the
same volume of traffic as with Gnutella. After
the OBSOLETE command is sent, traffic sim-
ply increases in proportion to the number of
nodes.

We evaluated the accuracy of anomaly
detection using the classification method
based on the frequency of occurrence of
words. We used the “Nessus”［10］simulated
attack tool to attack a Linux server, and classi-
fied collected syslogs into three risk categories
to create a corpus. We then used this corpus to

Fig.10 Overview of implementation

Fig.11 Results of traffic measurement

62 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

check logs (syslogs) for another attack by
Nessus. As shown in Table 2, this method was
able to classify logs with 95.5% accuracy.

For comparison purposes, we conducted
the same experiment on a Bayesian filter［11］,
which executes a similar statistics-based algo-
rithm. A Bayesian filter is often used against
so-called “spam” email. Since this filter can
extract a small number of words from logs, we
used trigrams instead of words. As a result,
this filter was able to classify logs with
96.63% accuracy. The main reason for this
increase in accuracy is that a trigram corre-
sponds to several typical words (four charac-
ters or longer) within the corpus. Also, the fil-
ter selected the 15 most typical trigrams in the
experiment; this helped eliminate intermediate
values likely to cause noise.

In the category “Danger”, we found three
logs that should have been classified as
“Unknown”. All of these logs contained the
string “rpc”. The corpus also contained this
string, whose value was used to indicate dan-
ger. These results show that when we attempt
to detect anomalies based on words and few
words are used to indicate danger, logs will
likely be judged as anomalous based only on
the presence of one of these words.

We compared the results between the
Bayesian filter and our classification method
based on the frequency of occurrence of
words. Accordingly, we concluded that it is
possible to improve the accuracy of our
method by using the most typical trigrams in
each category, as in the case of the Bayesian
filter.

7 Conclusions

As described in this paper, we devised a
system that can centralize log management
through coordinated operation of log collec-
tion/management servers. We also developed
the necessary coordination functions and a
prototype of a log collection/management
server that allows functions to be easily added
or modified. Based on the results of functional
verification of this prototype, we believe that
this system will work effectively.

Essentially, this system consists of equiva-
lent log collection/management servers,
although performance will vary depending on
the size of the organization or network in
which the server is installed. However, when
setting up a system across several organiza-
tions, it must be possible to vary the degree of
coordination among the organizations accord-
ing to their respective relationships. To this
end, we are also studying a mechanism to vary
the degree of coordination according to the
communicating parties and whether communi-
cations are internal or external, through inter-
organizational gateways that can restrict
responses according to destination.

As we modify and improve this prototype,
we will check the various individual functions
and improve the performance to demonstrate
that this system will work effectively in actual
environments.

Acknowledgements

This research was carried out based on the
“Research and Development on Security of
Large-Scale Networks” project commissioned
by the National Institute of Information and
Communications Technology. We would like
to express our gratitude to NICT for its guid-
ance and support.

Table 2 Results of anomaly detection
from logs

63KAMIO Masakazu et al.

Reference
01 http://www.npa.go.jp/cyber/toukei/html/html18.htm

02 http://www.dmtf.org/standards/wbem

03 Distributed Management Task Force, Inc., “Common Information Model (CIM) Specification”,

http://www.dmtf.org/standards/cim/cim_spec_v22, Jun. 2004.

04 IBM Corp., “Tivoli Management Framework Planning for Deployment Guide Version 4.1.1”

05 Fukuda Naohiro., et al., “DAIKIBO NETTOWAKU SEKYURIT’I KAKUHO NI MUKETA KENKYU KAIHAT-

SU”, JNSA Network Security Forum 2003 (NSF2003), Oct. 2003.(in Japanese)

06 Ishida Tsunetake., Kamio Masakazu., Hakoda Takahisa., Katsuji Tsukamoto., and Hiroshi Shimizu.,

“Peer-to-Peer Routing Protocol for Reducing Network Traffic”, 2004 IECE General Conference, No.B-16-

20, p.629, Mar. 2004.

07 Masakazu Kamio., and Tsunetake Ishida.,“Unified Log Management and Abnormal Log Detection Sys-

tem”, IPSJ SIG Tecnical Reports, Dec. 2004.

08 http://www.jnutella.org/docs/gnutellang/gnutella_protocolv4.shtml

09 L. Stoica, et al., “Chord : A Scalable Peer-to-peer Lookup Service for Internet Applications”,

http://pdos.lcs.mit.edu/chord/

10 http://www.nessus.org

11 Graham, Paul., “Better Baysian Filtering”, http://www.paulgraham.com/better.html, Jan. 2003.

KAMIO Masakazu

Corporation Product Division, Product
Development Department, YASKAWA
INFORMATION SYSTEMS Corpora-
tion

Computer Security, Multi-Agent System

HAKODA Takahisa

Manager, Corporation Product Divi-
sion, Product Development Depart-
ment, YASKAWA INFORMATION
SYSTEMS Corporation

Networks Security

ISHIDA Tsunetake

Corporation Product Division, Product
Development Department, YASKAWA
INFORMATION SYSTEMS Corpora-
tion

Computer Security, Computer Network

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

