
75MORI Akira et al.

1 Introduction

Since today’s society is more and more
dependent on computer networks—in personal
communications, corporate activities, and the
overall infrastructure—we are seeing an
increasing risk of serious damage from com-
puter viruses. Antivirus programs are now
installed in computers as a matter of course;
however, conventional antivirus software
relies on pattern matching based on a database
of known viruses and therefore is ineffective
in detecting unknown viruses.

The increasing sophistication of viruses
has led to higher risk of infection, and a more
frequent emergence of virus variants has
increased the efforts in pattern extraction to
cope with such variants. Since these infections
can cause immediate and serious damage,
demand is high for accurate detection technol-
ogy that can prevent this damage by detecting
unknown viruses.

Accordingly, we have been working to
develop the technology to detect unknown
computer viruses in Win32 executable file for-

mat (a standard program format running on
Windows platforms) that are activated on an
x86 processor. Specifically, we are developing
a tool to detect characteristic viral behavior,
such as file infection and mass mailing,
through analysis of API function calls. The
analytical process consists of decryption by
code simulation and static code analysis.
Defining anticipated virus behavior in the
form of policies will allow for the detection of
unknown viruses without relying on pattern
definitions (Fig.1).

2-8 Detecting Unknown Computer Viruses
2-5 — A New Approach —

MORI Akira, SAWADA Toshimi, IZUMIDA Tomonori, and INOUE Tadashi

We give an overview of a tool detect computer viruses without relying on “pattern files” that
contain “signatures” of previously captured viruses. The system combines static code analysis with
code simulation to identify malicious behaviors commonly found in computer viruses such as mass
mailing, file infection, and registry overwrite. These prohibited behaviors are defined separately as
security policies at the level of API library function calls in a state-transition like language. The cur-
rent tool targets at Win32 binary viruses on Intel IA32 architectures and experiments show that
they can detect most email viruses that had spread in the wild in recent years.

Keywords
Unknown computer viruses, Static code analysis, Code simulation, Security policy, Virtual
runtime environment

Fig.1 Scheme to detect unknown viruses

76 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

Through various experiments we have
confirmed that this new tool can detect most
of the viruses (unknown in terms of this tool)
that have proliferated in recent years. We ana-
lyzed virus samples, defined and implemented
policies based on the results, checked for
misidentification of safe programs, and con-
ducted detection experiments. As we repeated-
ly performed this procedure, we discovered
techniques used by many recent viruses to cir-
cumvent antivirus software.

In this paper, we will describe how this
tool works, typical techniques to circumvent
antivirus software, and the ways the tool can
respond to these techniques.

In this study, we focused on viruses in
Win32 executable file format and activated on
an x86 processor, as these are the most com-
mon viruses and the most difficult to detect.
The results of this research can also be applied
to other processors and operating systems.

2 Conventional antivirus technol-
ogy

Many commercially available antivirus
programs apply a detection system based on
the “pattern (signature) matching” or “scan-
ner” method. This system extracts certain
binary code segments from known viruses,
enters them into a database in the form of
hexadecimal strings (called “patterns” or “sig-
natures”), and matches files against this data-
base to determine whether they are viruses.
Generally, this system has the following disad-
vantages:

• The system cannot detect unknown
viruses whose patterns are not contained
in its database.

• It is difficult to create patterns that can
uniquely characterize viruses and prevent
safe files from being misidentified as
viruses.1

• Existing patterns are rendered inapplica-
ble to matching simply with partial mod-
ificationof the virus code (as seen in
numerous virus variants)—in an extreme
example, this can be accomplished mere-

ly through recompilation of the code
with a different compiler.

In addition to matching of simple string
patterns, antivirus vendors are now developing
more common patterns that can include regular
expressions instead of simple character strings,
as well as pattern matching using file or pro-
gram structures. However, these matching
methods essentially rely on syntactic informa-
tion and are thus fundamentally limited.

To detect unknown viruses, some antivirus
programs apply the “dynamic protection”
process, in which suspicious executable files
are run and observed on an isolated computer
to determine whether they are indeed viruses.
However, this method relies on actual
observed program functions and may not be
able to reliably detect viruses that do damage
only under specific conditions (e.g., on a spe-
cific date and at a designated time). The
“heuristic scan” method, on the other hand,
uses common patterns to detect specific pro-
gram structures, yet with this method it is con-
sidered more likely that useful programs will
be misidentified as viruses.

3 Self-encrypting and polymor-
phic viruses

To detect both known and unknown virus-
es effectively, we must be able to combat
viruses that are capable of self-encryption and
polymorphism. Self-encrypting and polymor-
phic viruses were originally devised to cir-
cumvent pattern-matching detection by pre-
venting the virus generating a pattern.
Unknown viruses applying this technique are
even more difficult to detect.

A self-encrypting virus consists of an
encrypted payload and code for decryption
once in memory (Figure 2 shows how this
virus is activated). Since the virus code is
encrypted, the behavior of the active virus
cannot be determined by program code check-
ing. Moreover, patterns can only be deter-

1 According to one antivirus software vendor, more
than 20,000 types of viruses, including variants, exist.

77MORI Akira et al.

mined from the unencrypted segment (the
decryption code), impeding pattern matching
even further.

As an enhanced version of the self-
encrypting virus, a polymorphic virus is
designed to avoid any fixed pattern. This virus
attempts to apply a different decryption code
each time it is activated, through changes to its
encryption method (Fig.3). In practice, how-
ever, it is extremely difficult to create a virus
with no fixed pattern, as there is a limit to the
number of available encryption algorithms.
Nevertheless, virus authors attempt to create
as many variants as possible through network
downloads of encryption algorithms. Detect-
ing polymorphic viruses with conventional
pattern matching entails the preparation of a
considerable amount of complex patterns, sig-
nificantly reducing processing efficiency.

4 Methods for detecting unknown
viruses

There are two main types of methods to
determine whether an unknown executable
program is a virus:

• Running the program in an isolated envi-
ronment to determine whether it does
damage (the “dynamic protection”
described in Section 2 above)

• Analysis of the program to identify seg-
ments that result in malicious behavior
(static analysis)

We selected the latter method as the focus
of this research. This is due to the technical
limitations of the dynamic method as
described above, and also to the fact that con-
stant monitoring on every computer is neces-
sary to prevent virus damage.

To develop a detection method based on
static analysis, we must overcome a number of
challenges, as follows.
(1) Measures against self-encrypting and poly-

morphic viruses
As described above, most viruses today

feature a mechanism for self-encryption to cir-
cumvent simple file checking or detection by
pattern matching. There are only two ways to
detect such viruses when these are unrecog-
nized: by cracking the encrypted code or by
allowing the viruses to activate decryption on
their own.

Fig.2 Self-encrypting virus

78 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

(2) Methods of identifying malicious behavior
To determine whether an executable pro-

gram will exhibit malicious behavior (corrup-
tion of files, mailing of confidential docu-
ments, etc.), it is necessary to analyze the spe-
cial function calls (API function calls for Win-
dows; system calls for Unix) requested by the
program from the operating system. Operating
systems such as Windows and Unix protect
files and other resources from direct manipu-
lation by ordinary programs. Even viruses
must call functions from the operating system
in order to perform any given malicious action
(Fig.4). A mechanism is therefore required to
identify sets of function calls that are indica-
tive of malicious behavior.

In this study, we used code simulation
technology to supplement static code analysis.
This enabled us to analyze runtime behavior
without executing virus code in a real machine
environment. In the case of a self-encrypting
virus, for example, the virus can decrypt its
code by itself on the simulator; this code can
then be used to perform static analysis.

Since each type of viral behavior is related

to a specific pattern of API function calls (as
shown in Fig.4) we identified these patterns in
the process of code analysis. Based on the API
function calls, we defined anticipated viral
behavior with advanced policies, and used
these policies as criteria to determine whether
a given program was viral. Conventional pat-
tern matching, on the other hand, relies solely
on syntactic information. Providing semantic
information on the behavior of viruses, these
policy definitions play a key role in increasing
detection sensitivity to previously unreachable
levels.

In the following sections, we will detail a
new detection tool and a method built on the
principles outlined above.

4.1 Code simulations
A code simulation precisely imitates

changes in the internal structure of an x86-
architecture CPU (i.e., changes to registers,
memory, flags, etc.) through the execution of
machine instructions. The code simulator we
used is operable both on Windows and Linux,
and features basic debugging functions such

Fig.3 Polymorphic virus

79MORI Akira et al.

as step execution, breakpoint setting, and
memory dump.

As described above, we cannot analyze the
behavior of self-encrypting and polymorphic
viruses by analyzing program code. To track
virus decryption and malicious behavior we
must perform sequential simulation of execut-
ed instructions.

4.2 PE loader functions
However, static code analysis for virus

detection cannot be performed adequately
using simulations of machine instructions
alone. In addition to executable code, a pro-
gram stores additional information—for
example, externally defined functions and
memory addresses (for storage of executable
code or initial assignment of execution con-
trol)—in various locations within a file. The
file must therefore be scanned to extract this
information and to load the executable code in
the proper memory addresses on the simulator.
In this way, the simulator performs the PE
(Portable Executable) loader functions nor-
mally executed by the operating system. Since

we focused on the Win32 environment, we
designed the simulator to process PE binary
format files.

4.3 Processing of external API function
calls

API functions are provided as an external
library for application program use. To per-
form code simulations using API functions, a
complete real machine environment must be
prepared; however, most API functions are
unrelated to virus detection. As a result, the
simulator must skip any instruction to call one
of these unrelated API functions (instead
recording the occurrence of a call), and pro-
ceed to a state in which this subroutine call is
finished. To accomplish this, the following
steps are required:

• Addresses are established that are used to
store the addresses of external functions
established at runtime. Specifically, the
following addresses are established, with
their respective stored addresses and the
names of the external functions:
a. An address allocated by the loader to

Fig.4 Identification of virus patterns by analysis of API function calls

80 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

each program upon loading; and
b. An address allocated by the virus

code to itself at runtime, using an API
function such as LoadLibrary (used
to dynamically load a library) and
GetProcAddress (to acquire the address
of a function in the loaded library).

• Arguments are removed from the stack.2

• Policy checking is executed (state-transi-
tion processor [state machine] is driven
to detect policy violations, as described
below).

In practice, however, there are so many
API functions that system extensibility may
not be ensured if these steps are included in
the simulator’s code for each API function. As
a solution, we designed the simulator to call a
dummy function (called a “stub function”),
instead of an API function, to perform the nec-
essary processing, and we prepared a separate
library of stub functions corresponding to
individual API functions. We have already
enabled automatic generation of stub function
templates through mechanical processing of
Windows system information (using the byte
count of the argument for a given API func-
tion). It is also possible to handle each func-
tion without affecting the remaining functions.

4.4 Virtual runtime environment
As described above, preparing the follow-

ing allows us to analyze programs and identify
virus-like behavior—essential for virus detec-
tion—based on API function calls without
requiring virtual execution of external library
code:

• Mechanism to load executable files/
libraries

• Stub functions
• Removal of arguments from the stack
• Policy checking (state-transition proces-

sor [state machine] is driven)

2 In accordance with one rule of the Windows envi-
ronment, arguments need to be removed from the stack
by library functions. However, it is necessary to deal
with the cases individually, to which the above rules is
not applicable.

However, if we are to perform analysis in
greater depth we must collect more detailed
information on the runtime environment, and
we must generate in a virtual environment the
side effects associated with program execu-
tion. Our newly developed detection tool uses
a Windows virtual environment database and
stub function values to meet the former and
latter needs, respectively.

Specifically, the following must be
addressed in a virtual runtime environment:

• Windows virtual environment database
• Registry
• Shell environment variables

•Runtime information
• Heap areas: dynamic work areas in

memory allocated by an API function
such as “HeapAlloc”

• Files: directories and files created or
opened by API functions such as “Cre-
ateFile”

Since the Windows registry itself is a large
database and the uses of many of its registry
keys are unclear, the virtual environment data-
base only includes registry keys referenced by
ordinary programs or likely to be abused by
viruses. A standard Windows environment has
over a thousand runtime libraries, and a plat-
form SDK includes an enormous number of
API functions. As a result it is extremely diffi-
cult to set stub functions for all of these
libraries by plugging in argument byte counts,
return values in successful execution, and the
like. Complicating matters further, different
return values (for zero values, character
counts, and error codes, for example) are used
among these API functions. It is currently pos-
sible to generate stub function templates auto-
matically for API functions defined in approx-
imately 100 frequently used libraries. Special
return values need to be entered manually with
reference to various sources.

In terms of runtime information, virtual
heap areas are allocated to individual pro-
grams so that virtual memory areas are allo-
cated in the virtual heap areas. Although no
actual files are created, file structures are gen-
erated and managed based on the relevant stub

81MORI Akira et al.

functions, and the resultant information can be
used in subsequent policy checking. As
described above, our new tool is designed for
accurate simulation of the execution of
instructions by the CPU alone. Additional
operating system processes such as PE loader
functions must be handled separately. A num-
ber of other features must also be managed
appropriately:

• Memory management including paging
• Exception interrupts
• Thread management
Exception interrupts can be handled by

SEH (Structured Exception Handling), a Win-
dows platform-specific mechanism. Paging is
indispensable for basic access control. The
new tool can handle basic paging as well as
exception interrupts caused by the paging
operation. In thread management, memory
areas must handle thread-specific data known
as TEBs (Thread Environment Blocks), and a
multithread execution mechanism must also
be available on the CPU simulator for syn-
chronous and exclusive control. The new tool
supports open information with TEBs and
simply analyzes elements of thread code in the
order of generation with multithread. This is
currently considered sufficient for behavior
identification. However, if several threads
coordinate to carry out a single malicious task,
the tool may not be able to perform policy
checks in high detail. One of our next goals is
to enable the tool to emulate thread execution
in greater detail.

4.5 Static code analysis
When simulating program code simply in

a sequential manner, it is only possible to
assess behavior that happens to occur during
the simulation (as in the case of emulation-
based dynamic protection). On the other hand,
it is extremely difficult to check every element
of code when a virus is capable of self-encryp-
tion or polymorphism.

In the early stages of development, we
considered using a backtracking method for
each branch instruction. However, taking
snapshots of CPU usage and memory proves

inefficient, and we found it extremely difficult
to handle loop structures. The current control
system first performs static code analysis to
read instructions for API function calls that
must be checked, and then leads the simulator,
on a priority basis, to execution paths that
include these API function calls (see Fig.5).

Static code analysis essentially consists of
steps performed by a disassembler:
(1) One byte of data is extracted from each

address in memory starting from a given
address.

(2) Reference is made to a machine instruction
established to determine the instruction
type(opcode) and argument (operand) for
the extracted data.

(3) The appropriate number of bytes is
skipped, according to the instructions.
The static code analyzer repeats these

steps. We devised a technique to mark each
element of code (separated by a branch
instruction and a jump address) to indicate the
completion of analysis. This technique allows
the simulator to call the analyzer again for a
subsequent (unmarked) element of code newly
generated by self-modification. The tool can
therefore efficiently check elements of code
that modify themselves dynamically.

4.6 Policy check system
As described above, policies anticipate the

unique, destructive behavior of virus. Specifi-
cally, they define scenarios covering mass
mailing, file infection, and so on with the
same degree of detail applied in API function
calls. Based on these policy definitions, the
new tool checks the results of code simula-
tions and static code analysis to determine
whether defined types of behavior can be
identified within the code. In addition to an
intended type of behavior (mainly represented
by certain API function calls), each policy
defines a state-transition processor (state-tran-
sition machine) that uses additional informa-
tion (argument strings in the case of API calls)
as input parameters. For example, a certain
type of mass mailing behavior is defined as
follows: when a “send” function is called from

82 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

the WSOCK32.dll library, a state transition
will occur from “socket connection complet-
ed” to “mass mailing has taken place” if the
“To” attribute (destination) of the function’s
second argument (message) is randomly
obtained from a certain file and the first argu-
ment (socket) is connected to a default mail
server address obtained from a certain registry.

Based on the information obtained by sim-
ulations and static analysis, the policy check-
ing system drives the state-transitioning as
defined in the policies to determine whether
the “accept” state is reached (see Fig.6). To
perform policy checking using the state-transi-
tion processor (state-transition machine) in
this manner, the tool is designed to activate
the policy checking system through stub func-
tions under the control of the simulator. If the
simulator is forced to jump based on the static
analysis results, it is led on a priority basis to
the execution paths that include the API func-
tion calls to be checked. As a result, policy
checking may become inconsistent with policy
definitions. However, we have checked over
200 virus types so far and have yet to
encounter such a problem.

5 Techniques to circumvent
antivirus software and corre-
sponding countermeasures

This section will give an overview of the
various viral techniques currently used to cir-
cumvent antivirus software and will describe
how our new detection tool counters these
techniques.

5.1 Concealment of API function calls
The new tool is designed to identify virus

behavior based on an API function called by
programs from the operating system. If the
tool fails to check API function calls, detec-
tion will be unsuccessful. Since it is possible
to estimate roughly how programs behave by
determining which API functions they call, an
increasing number of viruses now use various
techniques to conceal their API function calls.

The most basic technique is to use an API
function (e.g., GetProcAddress) to acquire
API function addresses at runtime. In the case
of an ordinary executable program, the run-
time libraries and API functions to use are
declared beforehand, and the function address-

Fig.5 Combined use of simulation and static analysis

83MORI Akira et al.

es are established when the loader loads this
program in memory. In contrast, if a program
acquires API function addresses at runtime, it
is only possible to determine which API func-
tions are called through execution of the pro-
gram.

To counter this technique, we implement-
ed a mechanism to allocate virtual addresses
for use by both the loader and by GetProcAd-
dress, to enable subsequent determination of
the functions that were called. Currently, how-
ever, many viruses can acquire API addresses
by scanning runtime libraries loaded in memo-
ry, without needing to use GetProcAddress.
Merely by determining the start address of a
library, it is possible to acquire all runtime
addresses from the memory image of the
loaded library in PE format (executable file
format of Windows platform). Moreover, the
following technique is also commonly used:
(1) A library is loaded (e.g., “foo.dll”) that

includes the desired API function. This
library is declared in advance, or loaded by
the LoadLibrary API function at runtime.

(2) An address is acquired for an API
function3 (e.g., “Func”) other than the

desired function defined in the loaded
library. The acquired function is declared
in advance, or acquired by the GetProcAd-
dress function at runtime.

(3) The library’s memory image is scanned on
the 16-bit boundary in the forward direc-
tion from the address of Func; the magic
word “MZ” is located in its position at the
beginning of the PE-format image, provid-
ing the library’s initial address4.
Through these complicated steps, many

viruses make it difficult to identify which
libraries they are scanning. Actual library files
must be prepared to identify viral behavior in
a virtual environment. It appears that these
steps are intended to prevent identification of
virus behavior by simple emulation. This type
of special technique is common to many virus-
es, a phenomenon attributable to the active
exchange of information among virus authors
and their extensive imitation of techniques
published in clandestine online magazines
generally referred to as “e-zines”.

Even if a virus applies the technique
described above to acquire the addresses of
API functions, the new tool can identify the

Fig.6 Policy checking mechanism

84 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

specific API functions called through emula-
tion of the PE loader which loads library files.
Instead of actual Windows platform library
files, this tool uses PE-format pseudo-library
files. Although these files do not include the
actual code of the API functions5, they hold
enough information to simulate viral memory
scanning behavior. Since such scanning
behavior is considered simply unnecessary
with ordinary programs, this behavior can be
incorporated in a policy to detect viruses (see
“IAC policy” in Section 6).

5.2 Techniques against
debuggers/emulators

To detect unknown viruses, many antivirus
software vendors use a heuristic scan method
that mainly checks for suspicious program
behavior in an isolated runtime environment.
To perform heuristic scanning it is necessary
to emulate a complete and real machine envi-
ronment. Using an OS-level debugger, howev-
er, may not allow for such complete emula-
tion.
5.2.1 Abuse of SEH (Structured Excep-

tion Handling)
Below we will describe a typical example

of SEH (Structured Exception Handling) on a
Windows platform.

SEH is intended to handle exceptions in a
unified and efficient manner, and is processed
by the operating system at a high CPU inter-
rupt level.

Specifically, the segment register FS stores
a pointer to the exception handler structure for
the current thread at the address “0”. This
structure usually consists of two dwords (four
bytes in total) and is stored in a stack area.
The first dword is a pointer to a next exception
handler structure, and the other is the address
of the handler code. Connecting all exception
handler structures through pointers in this

3 In terms of viruses, this is preferably a common
function unrelated to virus detection.

4 In the case of a Windows platform, executable
files are loaded on the 16-bit boundary.

5 These hold only open library information such as
names and addresses.

way, SEH enables dynamic selection of the
exception handler for use in execution.

Debugging usually presents no problem at
the OS level. However, we are seeing an
increasing number of viruses that force excep-
tion interrupts by attempting intentional
invalid access to certain memory addresses or
by executing division by zero. In such cases, a
self-decryption routine or payload (indicating
malicious behavior) execution code is entered
as an SEH handler against these intentionally
caused exceptions. SEH is processed by Win-
dows OS. Therefore, if a debugger is imple-
mented through the operating system, SEH
processing will be taken over by the OS, and
exception handling will be performed not in
the thread for the program to be analyzed but
rather in the thread for a different debugger
application. As a result, the programmed
behavior will not be exhibited and virus detec-
tion will be unsuccessful.

When control flow changes due to condi-
tional branching, analysis may be performed
by following every execution path. However,
when even jump addresses are dynamically set
by a special mechanism such as SEH, it is
impossible to perform analysis without the
processing capability required by the virtual
execution mechanism. The new tool is
designed to accurately process SEH as an
essential function in coordination with excep-
tion interrupt handling by the code simulator.
However, SEH processing also involves OS-
side processing, the details of which are
uncertain (i.e., not open to the public), such as
the various types of data on the stack, convo-
lutions of the stack when one handler is acti-
vated after another, and use of the terminal
handler for cleanup processing in a try-finally
construct. It may thus be wise to envision
future measures against the emergence of new
techniques to abuse SEH.
5.2.2 Other techniques against

debuggers/emulators
The following techniques are currently

used to check for the presence of a
debugger/emulator:

• Techniques to check for the presence of a

85MORI Akira et al.

debugger when debugging functions are
implemented through the operating sys-
tem:
a. Use of an “IsDebuggerPresent” func-

tion included in the KERNEL32.DLL
library

b. Use of the flag value stored at the
address “0x20” of the segment register
FS

c. Exploitation of the significant change
in values in the segment register FS in
the presence of a debugger, relative to
an ordinary Windows runtime environ-
ment.

• Techniques to check whether programs
are executed in an emulated environment
make use of the following:
a. Attempted access to an address with

very large memory size (up to 4 GB)
and verification of success or failure

b. The presence of specific definition
files in the system directory, or of spe-
cific registry keys

c. The obvious abnormality of system
information obtained from BIOS in an
emulated environment

d. Instruction specifications not included
in the CPU specifications—the AAM
instruction, for example. Since this
instruction takes any 1-byte operand in
division, it is possible to use numbers
other than the ten numbers included in
the specifications6.

Through the adoption of memory manage-
ment by paging, code simulation, and a virtual
runtime environment, the new detection tool
can prevent programs from recognizing that
they are being executed in a virtual machine
environment. However, as in the case of SEH
above, it would be wise to remain vigilant
against the emergence of new techniques
enabling such recognition.

It is also possible to define the behavior
described above within policies for virus
detection, based on the perception that ordi-
nary programs never behave in this manner.
For example, under normal conditions, a pro-
gram that uses the IsDebuggerPresent function

can clearly be considered a virus (see the anti-
debugger/emulation policy in Section 6).

6 Policies

Using the new tool and method described
above, it is possible to analyze nearly all exist-
ing viruses and useful programs. The problem
lies in determining which programs qualify as
malicious; here it is essential to define the
appropriate policies. Many policies are now
implemented within this tool; the main ones
are described below:

• Mass email policy: Checks for the sce-
nario in which each program acquires an
SMTP server address and random desti-
nation addresses based on registry infor-
mation in order to issue a message. Sim-
ulation is performed using the SMTP
protocol to determine whether mass
emailing actually occurs. Libraries are
used in accordance with several scenar-
ios; for example, with different sockets:
(WSOCK32.DLL, WS2_32.DLL),
WININET.DLL, or MAPI.DLL.

• Registry modification policy: Checks for
any modifications to system settings,
especially registry keys in which
autostart programs are listed. Defines a
separate list of prefixes for the registry
keys to be protected, and matches this
list against API function stubs related to
the registry settings.

• File modification policy: Checks for any
modifications to write-protect directo-
ries/files.Uses a prefix list of the directo-
ries/files as in the case of the registry
modification policy.

• File infection policy: Checks to deter-
mine whether each program writes itself
into files. Defines a scenario in which
each program acquires a file handler by
directory scanning, modifies it in memo-
ry, and writes it back to the file.
Although many file infection scenarios

6 However, this has yet to be incorporated into
Intel’s manuals.

86 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

are possible, currently only typical sce-
narios are checked.

• Process scan policy: Checks for a sce-
nario in which each program acquires
process IDs from a list of processes
under execution. It seems necessary to
include process infections in this sce-
nario. This is defined as a policy because
ordinary programs are unlikely to behave
in this manner.

• Self-code modification policy: Checks to
determine whether each program modi-
fies headers, especially of import tables,
in its memory image. This is defined as a
specific pattern because it is difficult to
distinguish between an ordinary code
modification by a self-extracting routine
and a jump table modification by an ordi-
nary program.

• Anti-debugger/emulation policy: checks
for special behavior attempting to detect
a debugger or emulator, as described in
Section 5.2.

• Out of bounds execution (OBE) policy:
Checks to determine whether each pro-
gram activates its code at the address of a
header section in which the program has
declared specifications. This is a quite
common policy, and is implemented sep-
arately, as programs created by ordinary
compilers or assemblers never behave in
this manner. Files created by certain
compressed executable file creation tools
may be detected as viruses.

• External execution policy: Checks to
determine whether each program starts
an external program with a Cre-
ateProcess or ShellExecute function call.

• Illegal address call policy (IAC): Checks
for any calls in which memory addresses
were obtained by direct scanning of the
memory image of library functions, as
described in Section 5.1.

• Self-duplication policy: Checks to deter-
mine whether each program copies itself
during execution. This is implemented as
a separate policy, as this behavior is com-
mon to many viruses.

• Network connection policy: Checks to
determine whether each program per-
forms FTP or HTTP communications.
Here addresses are not checked as in the
case of the mass email policy. Emulation
of FTP and HTTP protocols is required.

These policies are written in C++ language
as a program and called by stub functions
from the library to drive the state-transition
processor (state machine). We are now devel-
oping a description language to define more
sophisticated policies and working to create a
processing system for these policies. The most
challenging task we face, which we are
approaching in a step-by-step fashion, lies in
the creation of an automatically convertible
vocabulary list for policy definitions, abstract-
ed from the dynamically changing states of
target programs during virtual execution.

7 Experimental results

Using the policies described in Section 6,
we conducted detection experiments on
approximately 200 types of viruses that have
proliferated in recent years. Detection was
successful with all of these viruses. We dis-
covered that it is possible to detect not less
than 95% of these viruses using the IAC,
OBE, and self-duplication policies. Even with-
out the IAC policy, a detection rate of over
85% is possible using the OBE and
registry/file modification policies instead.

More than 80% of the virus samples had
not been analyzed prior to the experiments;
these viruses were thus unknown to the newly
developed tool. The tool was able to detect
unknown viruses we have seen proliferate in
recent years, such as MyDoom, Bagle, Netsky,
and all of their variants. These results confirm
the effectiveness of this tool in actual environ-
ments.

We must also address the misidentification
of normal programs as viruses, a problem aris-
ing with conventional detection methods. The
new detection method, however, consists of a
number of deterministic algorithms, and if a
certain behavior defined in policy is not pre-

87MORI Akira et al.

sent, it will not be judged as present. In this
sense, the new method will generate no false
positives due to misidentification; such gener-
ation is always related to the detection sensi-
tivity of policy definitions. For example, with
a common policy such as OBE, some safe pro-
grams are classified as viruses. This is because
the detection sensitivity of OBE is high, not
because the policy is incorrect. On the other
hand, the new method allows for exact and
detailed specification of detection criteria at
runtime. This plays a pivotal role in the suc-
cess of detection under this method and distin-
guishes the new method from existing heuris-
tic detection approaches based on superficial
program code structures.

The newly developed tool can be used as
an independent program verification tool or as
a virus filter, installed on a mail server or on
individual mail clients to protect users.

8 Conclusions and goals for the
future

Designed such that each of its functions
can be extended independently, this tool is
now nearly ready to proceed to the practical
level. Test operation, addition of functions,
and adjustments can be performed with ease,
although a check program is required for each
policy using C++.

On the other hand, there remains room for
improvement in processing speed and scalabil-
ity. Before putting this tool to practical use,
operational experiments will be required in an
actual environment to improve processing
speed, detection performance, resistance to
load, and operability. Specific improvements
are required as follows.

• Refinement of data structures and algo-
rithms. Thread management and other
simply implemented segments must be
redefined.

• It is difficult for general users to cus-
tomize security policies that are based on
C++ programs. Design and implementa-
tion of a policy description language and
processing system are required.

• Detection processing sometimes cannot
be performed properly due to the omis-
sion of datafor the virtual runtime envi-
ronment, such as registry values, file
structures, and dynamic libraries required
to identify program behavior. A great
deal of time and effort must be expended
to collect data when defects are found in
Windows platforms.

• Performance analysis must be executed
under heavy load conditions and process-
ing speed must be increased based on
analysis results.

• The current policies are defined based on
the analysis of viruses that have actually
proliferated. Virus authors will devise
new tricks, and it will become necessary
to define general policies against each of
them, even though this tool is designed
to detect unknown viruses. It is essential
that we define a set of comprehensive
policies that will leave room for future
response.

One of our goals is to establish an
unknown-virus detection tool that can run on a
mail server with several hundred users and
detect not less than 95% of unknown viruses
without affecting system throughput. The
actual detection rate will depend on the type
of viruses that emerge. As we work toward
greater system sophistication, we are keeping
an eye on current virus activity in our formu-
lation of standard policies. The following are
our goals for the coming year:

• To write each policy within an average
length of approximately 20 lines using a
newly designed policy description lan-
guage; to prepare a virtual runtime envi-
ronment database that can adequately
handle viruses that have emerged to date

• To define a general policy set consisting
of approximately 20 policies considered
effective against anticipated types of
viruses; to conduct detection experiments
on unknown viruses on a mail server
with several hundred users

• To detect not less than 95% of unknown
viruses while maintaining system

88 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

throughput loss below user-noticeable
levels; to prepare system operation docu-
ments and make the tool widely available
for practical use

Acknowledgements

We carried out this study from fiscal 2001
to 2003 under a commission from the
Telecommunications Advancement Organiza-
tion of Japan (currently NICT). Our success in
these efforts is due in large part to their sup-
port and guidance.

References
Very few papers and articles are available on unknown computer virus detection. We only list here a couple

of widely circulated books on malicious mobile codes［1］and virus creation methods［2］.

01 Roger Grimes, “Malicious Mobile Code: Virus Protection for Windows”, O’Reilly & Associates Inc., 2002.

02 Mark Ludwig, “The Giant Black Book of Computer Viruses”, Second Edition, Lexington & Concord Part-

ners, Ltd., 2000.

The followings are Symantec’s US patents concerning unknown virus detection methods.

03 USPTO disclosure, patent number 6357008, Dynamic heuristic method for detecting computer viruses

using decryption exploration and evaluation phases.

04 USPTO disclosure, patent number 5696822, Polymorphic virus detection module.

MORI Akira, Dr. Eng.

Group leader, National Institute of
Advanced Industrial Science and Tech-
nology

Formal Method, Ubiquitous Comput-
ing, Security

IZUMIDA Tomonori

Technical Staff, National Institute of
Advanced Industrial Science and Tech-
nology

Computer Science

SAWADA Toshimi

Senior Researcher, SRA Key Technology
Laboratory, Inc.

Formal Method, Security

INOUE Tadashi

Chief Researcher, SRA Key Technology
Laboratory, Inc.

Computer Virus Detection, Intrusion
Detection System

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

