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On the current communication scheme, Gaussian coherent state signals play an important
role. To make use of a potential of coherent state signals going beyond the shot noise limit, not
only Gaussian operations, but also non-Gaussian operations, described as the third or higher
order interactions with respect to the electric field amplitude, must essentially be applied. In this
manuscript, we discuss our recent results on the enhancement of entanglement and quantum
signal descrimination via the measurement-induced non-Gaussian operation with the photon

detector and linear optics.
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1 Infroduction

Quantum coding is expected to overcome
the performance limits of today’s optical com-
munications and to achieve the ultimate trans-
mission performance permitted by quantum
mechanics. To implement quantum coding,
quantum technology on the receiver side is
viewed as particularly important. This means
that, while the carrier of the signal is the same
coherent light pulse as in the ordinary classical
communication system, the receiver performs
quantum computing on the received optical
pulses to decode the maximum information.
This procedure enables quantum communica-
tions beyond the traditional “shot noise limit”.

The coherent state, which corresponds to
the coherent light, belongs to the Gaussian
class, the quasi-distribution of which is
described with the Gaussian form. The opera-
tion that transforms a Gaussian state to anoth-
er Gaussian state is referred to as a Gaussian

operation or a Gaussian transformation. For
example, beam splitters, wave plates, homo-
dyne detections, and second-order non-linear
optical processes all belong to the class of
Gaussian operations.

However, according to recent research on
quantum information theory, operations other
than Gaussian operations—that is, non-Gauss-
ian operations—will be essential for numerous
quantum information protocols to achieve
breakthroughs beyond classical information
processing, with the exception of a few appli-
cations such as quantum cryptography(1]1. A
non-Gaussian operation is a non-linear optical
process of the third or higher order (i.e., a
third- or higher-order non-linear process with
respect to the creation and annihilation opera-
tors of the photons). In other words, in order
to convert diverse optical quantum informa-
tion processes into practical techniques, we
need to generate and control non-Gaussian
optical quantum states with non-linear pro-
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cessing strong enough even for weak light

such as a state containing only a few photons.
A well-known example of a non-Gaussian

quantum state is the Schrodinger cat state.
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These are the superposed states of two beams
of macroscopic coherent light. |[K*(a)) and
|K—(a)) can be transformed into each other
with annihilation operator of the photon given
by a .
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Figure 1 shows the Wigner quasi-probabil-
ity distribution function of the Schrodinger cat
state, |K*(a)). The bulges with the Gaussian
shapes at the front left and back right express
oy and | — o), respectively, and the oscilla-
tion between them indicates the quantum
interference between the wave functions of
those two coherent states. The figure shows
that the shape of the entire curve is completely
different from that of a Gaussian curve.
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However, to generate this Schrodinger cat
state, some third- or higher order non-linear
process strong enough even for weak light
containing only a few photons, is required.
Unfortunately, no such device is yet available.
Alternatively, the measurement-induced non-
linear process, which is due to quantum entan-
glement and the photon-number resolving
detector, is promising. A measurement-
induced non-linear process is an operation that

effectively causes non-linearity using quantum
entangled states and photon-number resolving
detectors. The photon-number state is an
extreme non-Gaussian state; thus, the projec-
tion onto it, which is achieved through mea-
suring photons, is the effective non-Gaussian
operation. Once the quantum state is observed,
however, it is converted into an electrical sig-
nal and the quantum character of the light is
destroyed. To avoid this crucial difficulty for
quantum state operation, quantum entangle-
ment plays an essential role. When a fragment
of an entangled state is measured with a pho-
ton counter, the remaining state is non-linearly
transformed according to the result of the
measurement. It is the measurement-induced
nonlinear process that enables the effective
non-linear operations at present.

In principle, with such measurement-
induced non-Gaussian operation, we can
obtain a set of universal quantum gates that
can perform any type of quantum operation.
(See Referencel2] and Article 3-1.) However,
each of the components of the universal gates,
such as the high-performance detector and
squeezer, has challenging issues, making it
quite difficult to construct a practical quantum
device combining them.

On the other hand, we have been studying
the theoretical superiority of non-Gaussian
operations through measurement-induced
processes for certain quantum protocols that
will directly lead to demonstration experi-
ments. This article reports on our recent
research achievements in this regard.

The first half of this article discusses the
generation of the Schrodinger cat state based
on a measurement-induced non-Gaussian
operation and enhancement of local quantum
entanglement. The non-local correlation
between the entangled states plays important
roles in various quantum information process-
es. Combining two squeezed states, we can
obtain an entangled state, which is the non-
classical Gaussian state of light. A number of
protocols based on the effects of quantum
entanglement have been proposed and veri-
fied, such as quantum teleportation(3] and
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quantum dense coding[4]. Quantum entangle-
ment decreases through interaction with the
environment, and it is impossible to recover it
with Gaussian local operations and classical
communications only[5]. With the above mea-
surement-induced non-Gaussian operation,
however, the enhancement of entanglement is
possible(el, as discussed earlier. We have
recently shown that it is possible for mutual
information to increase in the quantum dense
coding channel due to this non-Gaussian oper-
ation[71. We have further succeeded in directly
evaluating mixed non-Gaussian entangled
states[9] using logarithmic negativity, which
is a suitable measure of quantum entangle-
ment[s]. We will report on these achievements
in the first half of this article.

In the latter half of this article, we discuss
the usefulness of measurement-induced non-
Gaussian operations in the measurement of,
and discrimination among, quantum signals.
In communication systems with quantum sig-
nals, a measurement in which information is
derived maximally is required. In this kind of
situation as well, non-Gaussian quantum mea-
surement can be a powerful tool. Not only in
regard to communication scheme, but also for
various quantum information processing pro-
tocols, it is a quite important theoretical issue
to study the implementation of the required
measurement. A number of researchers have
long been discussing these problems in detail.
Reviewing their past achievements from a
modern point of view provides us with valu-
able suggestions for a host of new possibili-
ties. Based on this approach, we have proven
that we can construct arbitrary binary projec-
tion measurements using photon detectors, lin-
ear optics, and classical feedforward control.
This is discussed in the latter half of this arti-
cle.

2 Enhancement of quantum
entanglement by non-Gaussian
operation

Now we consider that a part of the
squeezed beam |r) ( r is the degree of squeez-
ing) is tapped off with a beam splitter and it is
measured with a photon detector. Let us con-
sider an event selection such that a photon is
detected on the photon detector (Fig. 2). Beam
splitting of the non-classical states brings
quantum correlation between the resultant
beams. When one of the beams is projected on
a photon-number basis, which is a non-Gauss-
ian process, the remaining beam is trans-
formed into a non-Gaussian state. We obtain
catlike states close to |K~(a)) when an odd
number of photons is detected, and those close
to |[K*(«)) are obtained when an even number
is detected. Practically, however, in cases
where it has been difficult to identify photon
numbers precisely, an alternative method such
as the combination of a high-transmittance
beam splitter (for example 7" = 0.9) and on/off
photon detector is used, where the probability
of two or more photon events is almost negli-
gible, and the ‘on’ events are selected. As a
result, the remaining mode is transformed into
a state close to |K~(«)), where the probabili-
ties of two or more photon events are not zero
in a strict sense, so the generated state is more
or less reduced to a mixed state.

This probabilistic non-Gaussian operation

Non-classical . Non-Gaussian
Gaussian state b state
% " Beam
splitter
Photon P
detector

Schemattic diagram of Schrédinger-
cat-like state generation scheme
based on measurement-induced
non-Gaussian operation using
?eam splitters and photon detec-

ors

KITAGAWA Akira et al. 89



with linear optics and photon detectors is also
effective against the Gaussian entangled
states. When two squeezed states |r)a and
| — 78 , the quantum fluctuations of which are
squeezed along the z axis and the p axis,
respectively, are combined with a balanced
beam splitter, the resulting state is referred to
as a two-mode squeezed state. The photons in
each of paths A and B are correlated quantum
mechanically, which realizes a Gaussian
entangled state. The degree of entanglement is
stronger with a higher degree of squeezing, r,
and, at the limit of infinitely large squeezing,
the ideal quantum correlation is obtained.
However, the degree of squeezing practically
available is limited, for technical and other
reasons. Thus, we are led to consideration of
whether or not the entanglement can be
enhanced with local operations. However, it is
known that the Gaussian entangled state can-
not be enhanced with Gaussian local opera-
tions (i.e., performing independent operations
on beams A and B correlated with each other)
and classical communications only.

On the contrary, it may be possible to
enhance quantum entanglement if we use non-
Gaussian operations. Thus, we consider per-
forming measurement-induced non-Gaussian
operations on the two-mode squeezed state
(Fig. 3). Combining two beams of non-Gauss-
ian entangled state on mode A and B with
another balanced beam splitter, and measuring
each of the output modes with the homodyne
detection (continuous variable Bell measure-
ment), we can see that the variance is sup-
pressed more than the original squeezed state
in tanhr =X <0.67 (Fig. 4). In other words,
quantum fluctuation is more squeezed. This
implies that entanglement has been enhanced.

When the on/off photon detector is used,
the non-Gaussian entangled state is generated
as a mixed state, similar to the generation of
the catlike state. In fact, the evaluation of
entanglement in a mixed state is a non-trivial
task. Previously some entanglement measures
such as the entanglement of formulation(11]
had been proposed, however, almost all of
them are practically impossible to calculate in
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a straightforward manner for mixed states.
Alternatively, variable operational entangle-
ment evaluation was proposed, such as the
fidelity of continuous variable teleportation
scheme(6] and the violation of Bell type
inequality[12].We have recently applied non-
Gaussian entangled states to a quantum dense
coding channel and shown that the non-Gauss-
ian operation can be improved for the mutual
information(7] of this channel.

Quantum dense coding is a protocol that
improves performance of this channel using
quantum channels based on entanglement
(Fig. 5). The sender, Alice, and the receiver,
Bob, share the entangled states in advance,
and Alice encodes the classical message using
amplitude/phase modulation. Here, we consid-
er in particular Quaternary Phase Shift Keying
(QPSK), a model in which four-value signals
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are encoded, and the maximum information
that can be sent is two bits. Bob performs con-
tinuous variable Bell measurement between
his fragment of entangled state and another
sent from Alice in order to decode the infor-
mation. The results of homodyne measure-
ment obtained here correspond to the channel
matrix. Given the signal modulation power j
of the coding, we can calculate the perfor-
mance of mutual information of this channel.
Figure 6 shows the mutual information with
the non-Gaussian entangled state and Gauss-
ian two-mode squeezed state, respectively.
This figure shows that the non-Gaussian oper-
ation brings the gain on this channel to
A<Xp.(Ap ~0.65 when 3=0.7.)

Although the above results are significant
in the sense that the enhancement of quantum
entanglement is clarified from the viewpoint
of informatics, they depend on the modulation
intensity, and thus this method is also no more
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than an indirect evaluation. Accordingly, we
need a measure for which a calculation
method is uniquely defined, and further is also
“entanglement monotone”. Recently, one such
monotone measure, logarithmic negativity(s],
has been introduced, based on Peres’ separa-
bility criterion[13].

En(p) = log, |[677]]. 3)

Here, pP7 shows the partial transposition on
one mode only (for example, B) of the density
operator. |l -1l is the sum of the absolute val-
ues of the eigenvalues of the operator. As no
physical process corresponds to partial trans-
position, negative eigenvalues can appear due
to the effects of entanglement. The magni-
tudes of these negative eigenvalues corre-
spond to the strength of the entanglement.
This quantity can be calculated using the lin-
ear algebra packages. As this method has been
proved to be an entanglement monotone, it is a
useful measure. We have found a method of
efficiently calculating the logarithmic negativ-
ity for the non-Gaussian entangled states gen-
erated in Fig. 3. Figure 7 shows the results of
numerical calculation. The larger logarithmic
negativity is, the larger entanglement is, thus
we can conclude that entanglement is actually
enhanced by non-Gaussian operation in the
region indicated by A < Arn .

How is this evaluation related to the result
by quantum dense coding protocol discussed
earlier? In fact, in the limit of the signal inten-
sity of coding, 4 — 0, we find that the limit to
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improving the mutual information based on a
non-Gaussian operation converges to a fixed
value (Fig. 8), and this value is very close to
the one based on the logarithmic negativity
{(Ap ~ ALn) . This is considered to be due to
the fact that decreasing the modulation inten-
sity of the signal to an ultimately weak value
increases the role of entanglement in this
channel, thus bringing us close to a situation
in which the pure relative merits of entangle-
ment can be evaluated. In other words, this
method optimizes the quantum dense coding
channel for an evaluation of entanglement. If
the performance of the quantum dense coding
channel is improved as a result of this process,
we can conclude that the non-Gaussian opera-
tion has actually enhanced quantum entangle-
ment. Although the mathematical relationship
between logarithmic negativity and evaluation
by quantum dense coding unfortunately
remains unclear, this is an interesting topic
both theoretically and experimentally.
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3 Detection of quantum signals
with photon detectors, based
on non-Gaussian quantum
measurement

Up to the previous section, we discussed
how we might control quantum signals using
measurement-induced non-Gaussian quantum
operations. On the other hand, if we think of
the quantum signals as carriers for the classi-
cal information, that we directly use, we see

that these signals must be detected by a
receiver after they are manipulated, modulat-
ed, and transmitted. As the carriers we use in
communication—electrons and light—are
quantum signals that follow quantum mechan-
ics in the microscopic (weak) region, the prob-
lem of quantum signal detection as such repre-
sents an extremely general problem with
implications on overall communication theory.
In the latter half of this article, we address
the discrimination of coherent states in the
optical domain. Optical coherent states play a
central role in communication. We provide an
overview of the differences in performance of
a Gaussian receiver, which represents today’s
leading technology, and an optimal quantum
receiver incorporating non-Gaussian opera-
tion. We then discuss a design theory we are
proposing for a photon-detector-based optimal
quantum receiver capable of discriminating
arbitrary binary optical quantum signals.

3.1 Optimal quantum receiver for
coherent signal discrimination
Let us consider the simple problem of
coherent optical communication in which
information represented by {0,1} is carried
on signals obtained by phase-shifting the
coherent state using {|a),|-a)} (o is a real
number). Here, we assume that the occurrence
probabilities of 0,1 are equal. The most basic
Gaussian quantum receivers for such a signal
are a homodyne detector and a heterodyne
detector. The homodyne detector is mathemat-
ically expressed as a projection operation
described by the eigenbases |x) corresponding
to the quadrature amplitude operator

X=@+ah/ve, 4)
where (X |z) ==z|z)) and {a,a'} pare the cre-
ation and annihilation operators.

The output probability distribution is given
by

[(wla) | =

xr — o 2
_m] 5

1
N A l 2
As such, the coherent state is a typical Gauss-
ian state for which the homodyne detector
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probability distribution follows a Gaussian
distribution. When detecting the phase-shifted
binary signals using a homodyne detector, the
bit error probability is proportional to the area
of overlap between the two distributions
|{x|a)? and |(z| — )2, and given as

P - %erf(t(\/ia) ©)

Various quantum operations may be per-
formed along the way to improve on this error
probability. However, it may be impossible to
overcome the error probability limit of the
homodyne detector by using only Gaussian
operations. This is the final limit of conven-
tional optical communications, where the shot
noise limit applies to all communication per-
formance.

On the other hand, if we allow all quantum
operations in the receiving process, including
non-Gaussian operations, we can in principle
achieve an error probability beyond the limit
of Equation (6). In 1967, Helstrom formulated
the problem of calculating the minimum error
probability allowed by quantum mechanics.
For the phase-shifted binary coherent signals
discussed above, the minimum error probabili-
ty is given as

prin= 2 (1 VI—ToP) @
where x ={a| —«} . It has been shown that
quantum measurement that achieves this mini-
mum error probability is expressed as a pro-
jection onto the orthonormal bases consisting
of the superposition of the signal states them-
selves[14], as

1— Pénin Ppmin

|lwo) =4/ B o) — 4/ 2 |—04>‘ ®)
Pemin 1— Pemin

i) = Tzl t ﬁ%a). )

Although this expression is mathematically
simple, its physical meaning is not clear. Thus,
a physical mechanism providing an error
probability close to P™» was pursued as early
as 1970.

Kennedy showed that it is possible to
obtain an error probability characteristic as
close as approximately twice the Helstrom
limit of Equation (7) [15],

P = %e~2\a|2 (10)

In Kennedy’s method, the signal state and
strong coherent light are interfered by an
asymmetric beam splitter to shift {|a),|-a)}
to 10),|—-2a), and the photon detector deter-
mines only the presence or absence of the
photons.

This is the simplest example of non-
Gaussian manipulation to overcome the con-
ventional error probability limit, P caused
by the shot noise. Based on Kennedy’s
scheme, Dolinar proved that the Helstrom
limit can be achieved by the feedforward of
the intensity and phase of the coherent light,
according to the results of photon detection[16]
(Note that the Helstrom limit may also be
achieved by cleverly operating a complicated
non-Gaussian unitary transformation before
homodyne detection(17]. However, in this
case, the configuration of a feasible physical
system remains unclear.).

These proposals by Kennedy and Dolinar
represented pioneering, revolutionary devel-
opments in that they provided the first specific
methods for exceeding the performance limit
of optical communications. However, the
technical requirements were far beyond the
levels of electrical control and light-detection
technologies at the same time, so few studies
were conducted in this field. However, these
proposals are beginning to be recognized as
important problems that merit re-examination,
primarily for the following two reasons[18]1[19].
First, we have recently seen considerable
advances in quantum electronics as a whole,
and in photon detection technology in particu-
lar (see other articles in this issue), and these
proposals are now within reach. Progress in
these technologies has also pushed optical
communications technology based on homo-
dyne detectors close to the theoretical limit.
Second, theoretical studies concerning all
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areas of quantum information have advanced
greatly in the past 20 years. It has become
clear that the detection of quantum states,
going beyond the detection of coherent sig-
nals, will play an important role in all areas of
quantum information processing technology.

3.2 Design theory of optimal quantum
receiver for arbitrary pure binary
quantum signals

We will now discuss our recent activities
and achievements with regard to the designing
strategies of this optimal quantum receiver. In
the physical model based on the feedforward
discussed above, Dolinar derived the parame-
ters that will minimize error probability in the
detection of binary coherent states using opti-
mal control theory, including dynamic pro-
gramming, and showed that the parameters
will approach the Helstrom limit. On the other
hand, we have used the fact that quantum
measurement achieving the minimum error
probability is described by a projection mea-
surement, and then shown that Dolinar’s
method may be derived in a simpler manner
that does not require complicated optimization
theory[19].

The problem can be formulated as whether

a given two orthogonal states can be detected

with a combination of photon-number resolv-

ing detectors, coherent states (as a supplemen-
tary system), beam splitters, and high-speed
electric feedforward control. Here, we take the
binary coherent signals discussed above as an
example. The signals themselves are mutually
non-orthogonal coherent states. However, the
measurement is expressed as projections onto
orthogonal state vectors, {|wo),|w1)} . In other
words, the measuring instrument that we want
to produce need only be capable of perfect
discrimination of the two orthogonal states
lwo) and |wi). Such a measuring instrument
will also be able to detect the original non-
orthogonal signal states with the minimum
error probability. For the perfect discrimina-
tion of orthogonal states, {|wo),|w1)}, these
states need to maintain orthogonality during
the measurement process. An approach that

uses the orthogonal condition can allow not
only for discussion of the optimal measure-
ment of binary coherent states but also of the
problem of detecting arbitrary optical quantum
states. In other words, we can also discuss
whether perfect discrimination is possible with
the above physical system for an arbitrary pair
of orthogonal states, which are not restricted
to {lwo) ,lw1)}.

In addition, using this approach, we suc-
ceeded in proving that the perfect discrimina-
tion of two pairs of orthogonal quantum states
is possible using the above physical system
alone, by indicating a specific measuring
scheme[20]. This achievement represents the
generalization of the theory of the Dolinar
receiver. Furthermore, our approach shows
that if a sufficient number of photon detectors,
linear optics, and feedforward mechanisms are
provided, the photon detector does not need to
be able to perform complete photon-number
detection; instead, it is enough that the detec-
tor be able to detect the arrival of a photon
with the highest possible quantum efficiency
and the lowest possible dark count.

Let us denote the two orthogonal states as

@) =) dmlm) (11)
m=0 )

e}

|¥) = Z Cm|m)
m=0

Here, Im) is the m -photon state and
(T]®) =3 ocmdm =0 . As shown in Fig. 9,
this state is divided evenly with N~ —1 sets of
beam splitters such that the power reflectance
of each beam is 1/~ . These split beams are
measured sequentially. Each port interferes the
tapped beam and the coherent state |3.) of the
auxiliary system using a beam splitter with
sufficiently low reflectivity. Such an operation
corresponds to a shift operation described as
D(B./vN) and finally, one performs photon
detection. g, is determined based on the his-
tory of photon detection up to the previous
stage.

For a sufficiently large N, the probability
that two or more photons will be detected in a
port can be ignored. In such case, the state
after the beam passes through the first beam
splitter is expressed as
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where {(no|vo) + {(m|v1}/N = 0 holds. The mea-
surement at mode 1 is designed in a manner
such that the post-measurement states |¥')
and |®') corresponding to the two inputs |¥)
and |®), respectively, are orthogonal. It is
clear that such measurement is specifically
given by the projection measurement of the
form,

lm) = Npo{I0) — (X +O(X*)1)}, (14)
1) = N {(X™+0(X?))0)+ 1)}, (15)
where A,, and A, are the normalization
constants and the parameter X depends on

the orthogonal states |¥) and |®) and is deter-
mined as

_ 2(@olm){m ) — (ol ) (i [m))
VN({nolw1)[? = [{m[v0)[?)

(16)

In fact, this measurement can be implemented
with the shift operation D(3,/v/N) and photon
detectors, as discussed above. The first-stage
measurement (shown in Fig. 9) is thus
expressed with the vector

Df (%) 0) ~ e 1Bl/2N (m%%u)) ’(17)

Dt (%) 1) ~ —e Bl/2N (%|0>+|1>>’(18)

and we can approximately implement the
measurement device expressed in Equations

(14) and (15) if we select §; to make pn suffi-
ciently large. In addition, the post-measure-
ment quantum states |¥’') and |®') can be for-
mally expressed by

o

) =Y €llm)

m=0

@) =Y di,lm) (19)

m=0 >
for both cases of measurement results. Thus,
the second-stage and subsequent measure-
ments may repeat the process according to the
same strategy. The error probability for dis-
criminating {|¥),|®)} in the last N th-stage
projection measurement can be made to
approach zero asymptotically within the limit
of a sufficiently large N .

The discussion above concerns single-
mode optical quantum states. Nevertheless,
the conclusion is the same for multi-mode
states, where, for example, the two orthogonal
states are in the entangled states. It is already
known that all binary orthogonal states can be
discriminated only by a local projection mea-
surement for each mode[21]1. Thus, it is suffi-
cient to repeat the above measurement strate-
gy sequentially. See Reference[20] for a more
detailed discussion and derivation of the upper
bound of the error probability for a finite N .

4 Conclusions

This article reports on the theoretical
research achievements related to the non-
Gaussian quantum operations based on a mea-
surement-induced nonlinear process using
photon detectors and beam splitters. For the
Gaussian entanglement, conditional operation
using on/off photon detectors—which deter-
mine only the presence or absence of pho-
tons—generates mixed non-Gaussian entan-
gled states. It is generally difficult to evaluate
the degree of entanglement for mixed non-
Gaussian states. Nevertheless, we have found
that the logarithmic negativity, a measure of
entanglement, can be directly calculated for
these states. We also conducted a numerical
evaluation. The logarithmic negativity is an
entanglement monotone. Since this quantity
becomes large as a result of the non-Gaussian
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operation, we can directly conclude that entan-
glement is enhanced.

On the other hand, we also report on a
design theory based on a number of devices—
including photon detectors and linear-optic
equipment—for the sort of non-Gaussian
quantum measuring instrument that will be
required in quantum communications. A mea-
suring instrument that can detect quantum sig-
nals is a basic elementary tool for all parts of
quantum information technology. In particular,
we have theoretically proven that the most
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