Implementation of a Neural Network for
Retrieving Atmospheric Parameters from
Remote Sensing

Philippe BARON, Jana MENDROK, and KASAI Yasuko

A numerical model of a supervised feedforward Neural Network (NN) has been implement-
ed. The purpose is to study the capabilities of a NN based retrieval algorithm to inverse the
measurements performed by the future JEM/SMILES limb sounder. The model has been
designed for research purpose with a special care given to its flexibility and extension facility, but
keeping in mind that the computational performances must allow the use of a network with the
size of those commonly used for satellite data inversion. The code is written in the Python lan-
guage. The procedure to create and use a NN is presented and the algorithms of the training
procedure are described in detail. The MLP is trained using either the Levenberg-Marquardt or
the steepest descent method to find the optimal value of the model parameters according to
some examples of the inputs and outputs. The model also provides a set of functions to scale
the data or to use their principal components. In order to prevent the MLP to overfit the training
data, several solutions are available. A regularization term can be added to the cost function
with the possibility to optimize the hyperparameters using a Bayesian method. Also, an early
stopping procedure can be set using a cross-validation data set. The correctness of the algo-
rithms implementation is demonstrated with simulations and the results are discussed.

Keywords

Neural network, Multilayer Perceptron, Supervised learning, Satellite remote sensing,

Retrieval

1 Motivation

The super-conductive Sub-Millimeter
Limb Emission Sounder (SMILES) is a high
sensitive radiometer planned to be launched in
2009 in order to study the chemistry of the
mid-atmosphere (from ~10 km to 80 km)[1].
It will operate from the Japanese Experiment
Module (JEM) aboard the International Space
Station to measure trace gases on a global
scale. A data processing chain, based on the
Optimal Estimation Method (OEM)(21, is
under development by the Japanese Aerospace
eXploration Agency (JAXA). The procedure
uses a time consuming iterative procedure in

order to inverse the measurements using a non
linear forward model with respect to the
retrieved parameters[3].

An analysis is currently been performed in
NICT to study the capability of a Neural Net-
work (NN) based retrieval algorithm to
process the JEM/SMILES data. For this pur-
pose a supervised feed-forward NN, i.e., a
special family of a NN[4], has been devel-
oped. A feed-forward network is made of suc-
cessive layers of neurons and process the
information from the first layer to the last one
without feedback. This paper will mainly deal
with a MultiLayer Perceptron (MLP)!, a spe-
cial case of feedforward network that is com-

Philippe BARON et al. 165

monly used for retrieval applications. The
term supervised means that the model parame-
ters are optimized during a learning (or train-
ing) procedure with respect to a set of exam-
ples of the inputs and outputs.

A NN offers an alternative approach to
solve a non-linear retrieval problem. The NN
output calculation is fast and only requires
small memory storage. The computation time
cost is paid during the training phase that is
performed prior and independently to the data
processing phase. The training data can be
produced using the forward model and does
not required real measurements. Furthermore
the weighting functions with respect to the
retrieved parameters are not needed.

Theoretical studies for various satellite
observations techniques have shown that a
MLP based algorithm provides similar perfor-
mances (e.g., precision, accuracy and vertical
resolution) as the traditional statistical
methods(5]-[9]. Moreover some implementa-
tions have already been successfully applied
to real measurements(71[10]-[14]. Among
these references, a special attention is paid to
the inversion of the measurements performed
by the Sub-Millimeter Radiometer (SMR)
aboard the Odin satellite(15]1. The JEM/
SMILES measurements will be similar to the
Odin/SMR ones and the retrieval procedure
must deal with equivalent problems.

This paper focus on the model itself and
the application to JEM/SMILES data process-
ing is beyond its scope. It is worthwhile to
note that the model application is not only
limited to the JEM/SMILES retrieval analysis
but can also be used to solve any non-linear
regression problems or more generally to
solve function approximation and classifica-
tion problems[16].

Section 2 presents the general features of
the model and how to create and use it. The
model implementation is also discussed. Sec-
tion 3 details the algorithms of the learning
procedure and section 4 gives the different
ways in the model to avoid the common over-
fitting problem when the network is trained.
Finally the validity of the algorithms imple-

mentation is demonstrated using simulations
in Section 5.

1 A MLP is made of at least one hidden-layer.
The hidden neurons perform a derivable non-linear
function of their inputs and the output neurons per-
form a linear operation. Its has been demonstrated
that a MLP can approximate any regular function
with a given precision

2 General features

The trained MLP can approximate the
unknown inverse function of the JEM/
SMILES retrieval problem:

Yn = MLP (2, wp) (1)

where ¥n is a n-dimension vector that repre-
sents the unknown atmospheric states as well
as unknown instrumental parameters, €m is a
m-dimensional vector that represents the noisy
measurements, and wp is p-dimension vector
of the MLP parameters>.

A MLP works as an interpolator of any
regular function defined on a sampled grid of
q elements, i.e., the learning data set {an,
Yn}q. This analogy makes obvious the limita-
tions of the model: 7) a wrong result outside
the m-dimension space covered by the training
set, 11) poor performance possible for sparse
training data, 717) sensitivity to the noise/error
on the training data.

For the JEM/SMILES retrieval analysis,
the forward model will be used to produce the
training data set including the knowledge of
the statistic of both the instrumental errors and
the atmospheric variability. It should be
noticed it is also be possible to use real mea-
surements instead[12].

As shown in Figure 1, the MLP is com-
posed of neurons organized in successive lay-
ers. The first and the last layers are called the
input and output layers, respectively. They
both enclose the hidden layers. The neurons of
the input layer does not perform any operation
but just present the inputs to the neurons of the
first hidden layer. The neurons of the other
layers perform an operation of the form:

166 Journal of the National Institute of Information and Communications Technology Vol.54 Nos.1/2 2007

Input layer Output layer

hidden layer

Direction of the information propagation

Sketch of a 2 layers network with
1 X2X2 neurons (i.e., 1 input neu-
ron, 2 output neurons and one hid-
den layer of 2 neurons) and biases

A bias is represented as the weight of the con-
nection between a virtual neuron with a con-
stant activation 1 and a real neuron. The real
neurons are represented with the thick circle
1,3,4,6,7 and the biases with the thin circles 2
and 5. The weights of the connection w: to wio
are the adjustable parameters of the model.

alj) = f (Z w ali) + 9[;']) @)

where a[7] and a[j] are the activation levels of
the neurons 7 and j, the index 7 runs over all
the neurons located in the layer just before the
layer containing the neuron j, wi is the weight
of the connection between the neurons 7 and j
and 6 [j] is the bias. The weights w and the
biases # are the free parameters of the model.
The activation of the neurons of the last layer
are the MLP outputs.

By default f(x) = tanh for the hidden neu-
rons (i.e., neurons in the hidden layers) and f
is the identity function for the output neurons.
The user can defined its own activation func-
tion with the constraint that it is assigned to all
the neurons in a same layer.

In this paper, the size of the network will
be defined by the number of hidden layers
plus the output layer. The number of neurons
will be indicated using the notation, Ni X
N1xN2 ...xNo, where N7 is the number of
neurons in the input layer, N1 and N2 the

number of neurons in the first and second hid-
den layers, and No the number of neurons in
the output layer. As example, Fig. 1 shows a 2
layers network with 1 x2x2 neurons. It
should be noted that the biases are represented
as virtual neurons with a constant activation
value but are not taken into account when
indicating the neurons.

2 in this paper the underscripts indicate the
dimension of the vector/matrix and the superscripts 7'
and -1 indicate the matrix transpose and inverse
operators, respectively

2.1 Data normalization and
compression

The quality and the robustness of the
learning procedure can be improved when the
learning algorithm is applied to scaled and
compressed data(71(81117]. The model pro-
vides the possibility to perform these transfor-
mations. When these options are switch on,
they are hidden for the users and the model
inputs and outputs remain the same.

The scaled input data & are calculated as:

Ty, — mean(z)y,
3 x std(Z),,

T = 3)
where & is a representative sample of the
inputs xm.

The data compression is based on a Princi-
pal Component Analysis (PCA). The com-
pressed input «e is the representation of @m on
the basis composed by the first a eigenfunc-
tions of the covariance matrix of a representa-
tive sample

Kag = UagmZa, (4)

The rows of the matrix Uasm are the a first
orthonormal eigenfunctions sorted by decreas-
ing eigenvalues (i.e., the variance of the com-
ponents).

The compression level (i.e., the ratio a/m)
is controlled by the error on the reconstructed
input «;, when the inverse transformation is
realized:

o = (U7),, 4 Ka.)

m,a

Philippe BARON et al. 167

The user defines the threshold under
which the sum of the squared error
2im1,m (2" [i] = 2[i])* should lie.

The method is based on the assumption
that the principal components with low vari-
ances (small eigenvalue) carry poor informa-
tions and can be neglected. It means that the
information about parameters with low vari-
ability signature in the measurement might be
rejected by the compression procedure. The
low signature in the measurement can be due
to the low variability of the atmospheric para-
meters in the training set or to the low sensi-
tivity of the measurement.

It should be noted that although we only
described the normalization and PC transfor-
mations on the inputs, the same operations can
also be applied to the outputs ¥n.

2.2 Implementation description

The model has been designed for research
purpose with emphasis on its flexibility and
extension facility. However the model must be
able to handle MLP with the size of the ones
commonly used for satellite measurements
inversion. As example, a 30x10x1 MLP and
a training set of 4000 examples is used to
invert the Odin/SMR measurements(11] and
retrieve one atmospheric parameter per net-
work. In the analysis in the referencel(18] the
temperature profile is retrieved from the simu-
lated Infrared Atmospheric Sounding Interfer-
ometer (IASI) measurements using a 671 X
50%30 MLP and a training set of 2700 exam-
ples. In the Odin/SMR, the learning procedure
has to infer the optimal values for 321 para-
meters from 4000 equations; but in the case of
IASI, the system increases to 35130 parame-
ters and 81000 equations.

Given these constraints, the code has been
implemented in the interpreted object-oriented
Python programming language (http://www.
python.org/). The code itself is composed of 3
files and uses the external library NumPy
(http://www.scipy.org/) to provide the general
mathematical functions as well as the capabili-
ty to manipulate arrays and, so, limit the use
of the slow loops that are one drawback of the

interpreted language. Let's note that both
numpy and the 2-D plotting library matplotlib
(http://matplotlib.sourceforge.net/) transforms
Python in a practical and complete environ-
ment for this analysis. The model has been
tested on both Linux and Windows operating
systems. So far, the CPU time required to train
the Odin/SMR network on a normal PC is few
minutes and several days to train the IASI one.
We can consider that the later case is the limi-
tation of the model. However the code imple-
mentation will still be improved in the future
and meanwhile, the performance is good
enough to perform JEM/SMILES retrieval.

The MLP is a Python object instance. It
provides a set of methods (i.e., functions) to
modify and access its attributes (i.e., proper-
ties) such as the topology, the weights or the
activation level of each neuron. The different
operations to set up and run the model can be
written in a Python script and executed as a
normal program. They can also be directly
executed from the Python shell. In this case,
the MLP execution is performed in an interac-
tive way and the MLP properties can be ana-
lyzed after each operation.

As example, Table 1 shows some com-
mands in order to approximate a function Y> =
f(Xs) with a 4x3x2 MLP. It should be noted
that list of the methods that are presented is
not exhaustive.

In this example, first the MLP module is
loaded as the python module import (step 1).
The 4 x3 x2 MLP with biases is created as an

An example of commands
The sequence of the operations to approximate a
function Y2 = f(X4) using a 4 x3 x2 MLP and
training data set { Xtsq, Yt2q} of q examples. The
meaning of the steps is described in the text.

1> import mmlp
2> m = mmlp.M1p([4,3,2], bias=1,
act_hidden=’tanh’, act_last=’linear’)

3> m.setPcx(Xt, 1.e-6)
4> m.setScaley(Yt)

5> m.initweights()

6> m.fitweights(Xt,Yt)
7> m.run(X)

8> Y = m.getY()

168 Journal of the National Institute of Information and Communications Technology Vol.54 Nos.1/2 2007

object named m (step 2). It is set with the tanh
and linear activation functions for the hidden
neurons and the output neurons, respectively.
The input data are transformed to the PC of
the sample Xt4,q of q examples (step 3), and
the output data are scaled with respect to the
sample Yt2q (step 4). The threshold control-
ling the compression level of the output data is
set to 107%. The weights are randomly initial-
ized (step 5) and computed according to the
training data set {Xt4, Yt2}q. Finally, the
model is used to process the input X (step 7)
and the output Y2 is retrieved (step 8).

3 The learning algorithms

3.1 The regression algorithm

The training procedure aimed to estimate
the optimal values of the MLP parameters wp
using the training data {¥m, 2»}¢ of ¢ inputs @m
and expected values z». The solution mini-
mizes the cost function & defined as:

& = g [éofgo({xm}q 3 wp)]T[Zoig"({Im}q ? ’U)p)]
«. T
b o, ©)
= BE. + aFE}

where 0 = nxgq, Zo is the vector built with the
set of expected values {zn}q, and g}o is the out-
puts when all the training inputs {xm}s are
presented to the model. The term Ew is includ-
ed in order to stabilize the solution and to
favour low values of w.

The minimum of the cost function is locat-
ed using the Steepest (or gradient) Descent
(SD)r21141 or the Levenberg-Marquardt
(LM) (210191 methods. Both methods are itera-
tive algorithms that correct the weights after
each iteration as:

dwp = —1) (a_é)p | (7

Owp

The derivative of the cost function is given
by:

(g_;p) = —BI 1% — Jo{Tmbrq » wp)] + aw, (8)

P

where Jop, = 33; is calculated using the

standard retropropagation algorithm(4] and the
parameter 7 is:

wt, in case of SD

= { (B D + (nt+)T] in case of LM

where Ip,p is the p Xp identity matrix, and u is
the inverse of the step size parameter for the
SD method and the Marquardt parameter for
the LM method. The parameter n for LM is
derived from the Gauss approximation of Hes-
sian matrix of the cost function:

6262
2
owg

~ BT, + aly,] 9)

The initial value of u is set by the user (the
default value is 10) and it is updated after each
iteration in order to ensure the convergence
toward the cost function minimum. The Mar-
quardt strategy for updating u is used for both
the SD and LM methods. If the cost function
(Eq 6) increases after updating wy, the para-
meter u is multiplied by an user defined value
(the default value is 10) and a new estimation
of the weights is performed (Eq 7). If the cost
function decreases, u is divided by an other
user defined value, the Jacobian and the Hess-
ian matrices are calculated and wq is updated.
Such process is repeated until the convergence
is reached. In case of LM, once the conver-
gence is reached an additional loop can be
performed with u set to 0.

The convergence is reached when the
change of the cost function between two con-
secutive iterations 7 and 7 + 1 is small. The
convergence criterion is defined as |&2 (1 + 1)
-e2 (1)| < (thr x €2 (2)). The threshold thr is
defined by the user (the default value is 10-°).
We present in section 4 some additional mech-
anisms that have been implemented to stop the
iterative process before the convergence is
reached.

At the beginning of the iterative process,
the biases are set to 0 and the connection
weights are randomly set with value between
-1 and 1. When the input data are normalized,
it is also possible to use the method proposed
by[20] to initialized the weights and the biases
between the input and the first hidden layers.

Philippe BARON et al. 169

The LM method is stable and is faster to
converge to the solution than the SD method.
However SD does not required the calculation
and the inversion of the Hessian matrix (Eq 9)
and, so, it is better suited to train a network
with a large number of parameters such as the
IASI one presented in Section 2.2.

The matrix Jop (Eq 8) has a large size but
it is not stored in memory since only the Hess-
ian matrix (Eq 9) and the Jacobian of the cost
function (Eq 8) are used. In the model the
training set is decomposed into 7 subsets of ¢
elements, where each subset corresponds to
one neuron output. The Hessian and the Jaco-
bian matrices are calculated using the equa-
tions:

(379),, = D (GM)pe(Ti)gp

i=1l,m

and

862 _ JT ~’L‘
B, p——ﬁ.Z (Ji)p’qeq + awy

where Jigp and e’, are the Jacobian matrix
and the error on the activation of the 7" net-
work output estimated on the ¢ training data.

3.2 Bayesian regularization

A probabilistic approach of the regularized
regression problem leads to interpret the
hyperparameters « and 3 (Eq 6) as the inverse
of the variances of the MLP parameters wy
before the training process, and the error E'y =
[20=%o ({2m}q, Wp)], respectively. The parame-
ter @Avp is the most probable value of wp. The
notation ~ will be used hereafter to define a
parameter estimated with 7:{)1).

An optimal value of the hyperparame-
ters is estimated applying the Bayesian
rules[e1][2a]:

_
a = =
262,
(10)
o—vy
B = =
252

where H pp 18 the Hessian matrix of the cost
function(Eq 9), and

v o= p—atrace(ﬁ;;)
LA (11)
k=15\k+a

is the effective number of parameters that
can be calculated from the eigenvalues
Ay of 3 (jTJ”)W

When the LM method is used, an algo-
rithm has been proposed to update the hyper-
parameters after each successful iteration
using the values of wp and Hp, available at the
current stage of the iterative cycle(23]. If the
SD method is selected, the Hessian matrix has
to be calculated. However, this algorithm may
leads in some cases to too high value of (R)
and overconstrains the solution. Therefore,
two alternative implementations, claimed to
be more robust, have been preferred in the
model.

The first one[24] estimates the parameters
from the iterative process:

. > N
Wi+l) = kzzl et ad)
(12)
. _ i+ 1)
alt+1) = 22

where 1 is the iteration index. The number of
loops imax is defined by the user and the default
number is set to 1 that is the solution proposed
in[23]. The parameter 3 is derived from Equa-
tion 10 using the last estimation y (imaz).

The second implementation([25] approxi-
mates a as:

and both y and /3 are computed using the new a.

The initial values of 0, 1 and p are used for
a, 3 and y, respectively. As described in(es],
the hyperparameters are updated only after a
given number of iterations defined by the user
(the default number is 3).

After updating the hyperparameters, the
definition of the cost function changes and it
must be estimated again before to proceed fur-
ther in the Marquardt loops cycle. The value
of the new cost function becomes equal to the

170 Journal of the National Institute of Information and Communications Technology Vol.54 Nos.1/2 2007

value of y (See Eq 6 and 10).

The effective number of parameters p is
the degrees of freedom of the network. It is
always inferior to the number of parameters
wp. Hence its optimal value provides an objec-
tive criterion to estimate the optimal size of
the network. For a network with too few neu-
rons, y is close to the number of parameters
wp. When the size of the network increases,
The value of y increases up to the optimal
degrees of freedom. The best size for the net-
work is the one for which the number of para-
meters wp is slightly superior to the maximum
value of y.

The complete teaching procedure is sum-
marized in the Table 2.

1[e]0)[z0 74 Summarize of the main steps in
the learning algorithm

The sign* indicates an optional step

1. *scale the input/output data (Eq 3)
2. *convert the input/output to PC (Eq 4)
3a compute the cost function €2 (Eq 6)
3b calculate the Jacobian of € (Eq 8)
3¢ *calculate the Hesslan matrix (Eq 6)
4. update the weights and biases w, (Eq 9)
5. in case of LM:
5a. if p # 0 and the convergence is reached,
set Hprev = K
set 4 = 0 and return to step 3b.
5b. if 4 = 0 and the convergence is reached,
stop the process
5c. if p = 0 and €? increases,
set (4 = Uprey and return to step 3a.
6 in case of SD:
6a. if the convergence is reached,
stop the process
7. if ¢ decreases, increase p
set w,, to the previous value and
return to step 4.
8a *in case of Bayesian regularization,
if €2 increases,
update the hyperparameters (Eq 10) and e
8b if €2 increases, decrease p and
return to step 3b

2

The convergence is reached if one of the
following tests is true:
1. small change of the cost function:
|e2(i + 1) — €2(3)| < (thr x €2(i)),
2. number of iterations superior to a threshold,
3. early stopping criterion fulfilled
(see section 4.2)

4 Oveffitting issue

Overfitting is a common problem when
teaching a MLP with noisy data. The noise
patterns on the training data are perfectly rep-
resented but the MLP has poor performance
when the new input data are presented. Sever-
al methods have been implemented in the
model to deal with this problem and to force
the MLP to provide a smooth representation of
the training data.

4.1 Structural stabilization and
regularization

The complexity of the MLP, i.e. its ability
to represent a function with complex patterns,
is controlled by the number of parameters wp
and their amplitudes. The complexity of the
model depend on its degrees of freedom that
can not be superior to the number of parame-
ters. Using a regularized cost function (Eq 6)
or acting on the number of parameters are two
similar ways to control the degrees of freedom
of the model. It should be noted that a model
with too low degrees of freedom will not cor-
rectly approximate the function.

To solve a retrieval problem it is enough to
use a 2 layers networks[(141[18]. As already
discussed in Section 3.2, the Bayesian learn-
ing procedure provides the optimal value of
the degrees of freedom, y (the effective num-
ber of parameters), and, hence, provides a way
to estimate the best number of hidden neurons.

4.2 Early stopping

The iterative process of the learning algo-
rithm can be stopped before it reaches the con-
vergence. The early stopping procedure pre-
vents to get the parameters wp with too large
values. The user can stop the learning proce-
dure by defining the maximum number of iter-
ations. Another way is to use a cross-valida-
tion data set that indicates when the general-
ization capability of the model starts to
degrade. The process is stopped when the
cross-validation cost function does not
decrease for a given number of iterations that
is defined by the user.

Philippe BARON et al. 171

5 Verification of the algorithms

5.1 Neurons activation and output
Jacobian matrix

The algorithms implementation for the cal-
culation of the neurons activation and the out-
put Jacobian have been verified using a refer-
ence MLP with known parameters. The refer-
ence MLP is a simple 1x2x2 network as the
one presented in Fig. 1. The values of the
parameters wp are given in Table 4. The acti-
vation functions are the tanh and the identity
functions for the hidden and the output neu-
rons, respectively. Figure 2 shows the 2 net-
work outputs between -50 and 50.

The small size of the network allows to
easily derived the analytical expression of the
neurons activation and the Jacobian of the out-
puts. The Table 3 shows the functions for the
activation of the hidden neuron «[3] and the
output neuron «[6]. Also shown is the Jaco-
bian functions of the first model output o[1]=
a[6] with respect to the parameters w[1],
w[5], w[7] and w[9].

The model outputs and the analytical func-
tions have been calculated on a regular grid of

I[s]s)[=1%4| Analytical expression of the acti-
vation of the neurons a(3) and
a(6) of a MLP as the one present-
ed in the Fig. 1 along with the
Jacobian of the first output o(1)=
a(6) with respect to the parame-
ters w(l), w(5), w(7) and w(%)

A tanh and linear activation functions are per-
formed by the hidden and the output neurons,

respectively.

af3] = tanh (w[l] x af1] + w[2])

al6] = w5] x af3] + wl6] x a[4] + w[7]
J[1,1]:g§)[[11]] — afl] x wfs] x (1—a?[3))
J[1,5]:g§}[[15]] ~ af3)
J[1,7]:68§)[[17]] =1
J[1,9]=g§}[[g] - 0

172 Journal of the National Institute of Information and Communications Technology Vol.54 Nos.1/2 2007

10 points between - 50 to 50. The activation of
all the neurons has been checked as well as the
elements of the output Jacobian matrix. The
comparison reveals that the differences
between both calculations are negligible with
an amplitude at the level of the numerical
noise (~107'%). The Table 5 shows an example
of the results for the activation of the neurons
3,4,6 and 7 and the Jacobian matrix of the out-
put 1. For each parameter, it is also indicated
the minimum and the maximum values, as
well as the maximum of the error.

5.2 Cost function minimization

The reference MLP defined in the previ-
ous section is used to check the implementa-

(a) Output 1

g gt

1

AF) e D e B2 L B)
-
i

&
=

40 i) (1]

20 0 20
(b) Output 2

6| Ly
5 0l
4 -
- 3 -
ot %
1 . -
0| I8 A~
a1 L
k) -40 -20 [] 20 40 60
input

7l 74 First and second outputs of the
reference MLP

The red-circle data are used to verify the algo-
rithms.

i[s]s) =172} Values of the reference MLP
parameters wp fogether with 2
other combinations that pro-
duce identical model outputs

Bias indexes are written with bold Figures.

index w, other solutions
1 0.05 -0.05 0.10
2 0.10 -0.10 -0.50
3 -0.10 -0.10 0.05
4 0.50 0.50 0.10
5 1.90 -1.90 -2.00
6 2.00 2.00 1.90
7 2.50 2.50 2.50
8 -10.00 10.00 7.00
9 -7.00 -7.00 -10.00
10 3.00 3.00 3.00

tions of the LM and SD methods in the calcu-
lation of the model parameters wp. A new
MLP with the same size and activation func-
tions is trained to reproduce the reference
model. The training data is made of 10 outputs
of the reference MLP calculated with inputs
regularly spaced between -50, 50 (see Fig. 2).
Three learning setting have been defined: 1)
the LM method is used, 2) the LM regression
method is used with scaled training data and,
3) the SD regression method is used with
scaled data. Table 6 summarized the setting
and the results. No regularization term is used
in the cost function (3=1 and «=0). The itera-
tive process is stopped when the change of the
cost function between 2 consecutive iterations
is small, the value depend on the setting (see
Table 6). The total number of iterations is lim-
ited to 40000. Each setting is repeated 100
times, the initial values of wp are changed in
each run using the Nguyen algorithm (see Sec-
tion 3.1).

I[s]s)[=15) Comparison of the model with

the analytical calculation for 10
inputs regularly spaced between
—50 fo 50

The model is the MLP presented in Fig. 1. It is
shown the results for the activations a[3], a[4],
a[6] and a[7], as well as the first output o[1] =
a[6] Jacobian with respect to the 10 weights and
biases. The first column gives the variability
range of the parameters and the second column
gives the maximum error.

’ value range I error

Neuron output

af3] 0.98,0.98 | L.1e-16
al4] -1.00, 1.00 | 1.0e-16
al6] 2.20,3.74 | 4.4e-16
a[7] -1.25,5.83 | 1.7e-15

J[1,1] [-19.29, 14.80 | 1.5e-14
J[1,2] 0.04, 1.89 | 4.4e-16
J[1,3] | -4.30,15.72 | 9.7¢-15
J[1,4] 0.00,1.99 | 4.4e-16
J[1,5] -0.98,0.98 | 1.1e-16
J[1,6] -1.00, 1.00 | 1.1e-16
J[L, 7] 1. 0.
J[1,8: 10] 0. 0.

It is worthwhile to note that some permu-
tations of the neurons and changes in the sign
of wp let the model outputs unchanged (see
Table 4). Therefore a direct comparison of the
retrieved parameters with those of the refer-
ence model is not well appropriated. The qual-
ity of the learning procedure is estimated by
the sum of the squared error on the trained
outputs deduced from a test data set. The test
data are calculated using 100 inputs regularly
spaced from -50 to 50.

The top panel of the Fig. 3 shows errors on
the trained MLP with the first learning setting.
The errors are shown with respect to the run
indexes and the inputs of the test set. Among
the 100 runs, 88 produced a model with a neg-
ligible error of less than 10-'>. We can note
that the other 12 runs have produced a wrong
MLP with a large error that above 0.5 for all
inputs. Such wrong model are clearly detected
and can not be misinterpreted.

The bottom panel of the Fig. 3 shows the
variations of the cost function (calculating on
the training data set) and the Marquardt para-
meters with respect to the iteration index for 5
typical runs. For 4 runs, the convergence is

I[s]0][=1s1 Definition and results summarized
for the three settinys

The results are the average value over the 100
runs performed for each setting. It is given the
cost function at the end of the training procedure.
The runs with a costfunction > 0.01 are flagged
incorrect. The number of successful iterations
(decrease of the cost function) and the ratio of
successful iteration. The latter is as the ratio of
the number of successful iterations to the total

number.
Setting 1 2 3
regression method LM LM SD
X and Y Scaling no yes yes
number of runs 100 100 100
convergence threshold le-7 l.e-7 l.e-8
4 initial 100 10. 50.
1t increase rate 2. 2. 150
1 decrease rate 10. 10. 300.
Results
cost function 4.0e-29 | 3.7e-29 | 6.5e-05
number of incorrect runs 12 0 0
number of iterations 25 13 18704
successful iteration ratio 0.36 0.67 0.47

Philippe BARON et al. 173

Simulation index

[an T
10 T ET e g ST CRERIE i
Ty e T s e i o SN S

10° i 3\ A
[10 20 30 40 50 (] T0 a0
Iteration number

Results of the first learning setting

Top panel: error on the trained MLP outputs.
The error is defined as the square root of the
sum of the squared errors on both outputs esti-
mated for each test data. The Levenberg-Mar-
quardt method is used and the training data are
not scaled. The position of the training data are
indicated by the full dark circles. Bottom
panel: Cost function estimated on the training
data set and u parameter with respect to the
iteration index for 5 networks among the
100 runs.

reached with a low value of the cost function
of about 10727 and with 30 to 60 iterations.
The 5th case is one of the 12 wrong trained
MLP, it is trapped in a secondary minimum
with a cost function above 1072,

The Fig. 4 shows the results for the second
learning setting. The fact to scale the data
improved the results since all the trained MLP
have reproduced perfectly the reference model
with a error less 107'*. The convergence is
always reached with less than 35 iterations. The
mean number of successful iterations is 13.

The results obtained from the two first set-
tings demonstrate the validity of the Leven-

Simulation index

] 10 15 20 5 30 35
Iteration number

[l 28 Results for the second learning setting

Top panel: Same as the top panel of Fig. 3 but
using scaled training data. Bottom panel: Same
as the bottom panel of Fig. 3 but using scaled
training data.

berg-Marquardt algorithm implementation.

The results for the last learning setting are
shown in Fig. 5. The training is done using the
SD method on scaled data. The convergence is
very slow and, for 99 runs, the training has
been stopped before the convergence is
reached. The mean number of successful itera-
tions is about 18000. For the run represented
by the horizontal dark red line around the sim-
ulation index number 10, the learning proce-
dure has incorrectly interpreted the small
change of the cost function as a convergence
and stopped the process too early. However
the convergence is stable since all the trained
MLP has reproduced the error patterns with an
error inferior to 1072, We can conclude that the
steepest descent algorithm is correctly imple-
mented but the convergence speed has to be
increased by improving the update of the step
size parameter (u ') after each iteration.

174 Journal of the National Institute of Information and Communications Technology Vol.54 Nos.1/2 2007

Simulation index

5000 10000 15000 20000 25000 30000 35000 40000
Iteration number

Results for the last learning setting

Same as the top panel of Fig. 3 but using the
steepest descent method and scaled training
data. Bottom panel: Same as the bottom panel
of Fig. 3 but using the steepest descent method
and scaled training data.

5.3 Bayesian regularization verification
The approximation of the triangular wave-
form function presented in the reference
where the Bayesian regularization algorithm is
proposed[23], is repeated in this section.

The triangular wave function is made of 3
linear peaces between O and 1 (Fig. 6). The
training set is a made of 100 regularly spaced
data with a noise of a variance of 0.01 applied
on the outputs. We have trained several 1 X
Nh =1 networks with N7 set to 2,3,4,5,6,8,10
and 14. For each network, the initial value for
a and 3 are 107° and 1, respectively. Their
values are updated after each successful itera-
tion as described in Equation 10. The initial
value of the Marquardt parameter u is set to 1;
it is multiplied by 2 or divided by 10 accord-
ing to the convergence status.

The top panel of the Fig. 6 shows the

IxGx1 Network without regularization

-
=
2 oo
2
=3
0.5
1.0
)
The 0.4 02 0.0 0.2 0.4 0.6
input.
1x6ix]l Network with Bayesian regularization
L5
10
0.5
El
.g. 0.0
0.5
L0
T 04 032 0.2 04 0.6

0o
input

Top panel: Approximation (red line)
of the noisy triangle wave function
(dot line) by a 1X6X 1 without rey-
ularization

The original no noisy function is also shown
(blue thick line). The calculation is a remake
of the one presented in [23]. Bottom panel:
same as top panel but a Bayesian regulariza-
tion scheme is applied.

approximation of the function by a 1x6x1
network trained without regularization term in
the cost function. The overfitting effect can be
seen between -0.4 and -0.2. The bottom panel
shows the same approximation but using a
regularized cost function and the Bayesian
algorithm. The overfitting effects has been
removed and the approximated function fits
the original free-noisy function.

The results for the 8 trained networks are
summarized in Table 7. The performance of
the networks is estimated by the sum of the
squared error Fa evaluated on the noisy-free
training data set. The error Fa decreases
down to 0.16 when the MLP size increases.
For networks with more than 4 hidden neurons
the error Ka becomes slightly constant. The

Philippe BARON et al. || 7175

I[s]e)[=0 74| Results of the fraining of 8 net-

works of 1 XNhX 1 neurons
The number of parameters wp is Nw and the sum
of the squared error between the MLP output and
the function without noise is Fa. The parameter
y is the effective number of parameters. The
results of the original study [23] are given in

parenthesis.

Nh | Nw Ea ¥

2 7 0.56 (0.50) | 5.6 (5.7)
3 10 | 0.26 (0.19) | 8.7 (8.5)
4 13 | 0.16 (0.11) | 10.2 (9.8)
5 16 | 0.16 (0.11) | 10.3 (9.9)
6 19 | 0.17 (0.11) | 10.3 (9.9)
8 25 | 0.17 (0.11) | 10.3 (9.9)
10 31 | 0.17 (0.11) | 10.3 (9.9)
14 43 | 0.17 (0.11) | 10.4 (9.9)

effective number of parameter increases up to
10.3 when the number of hidden neurons
increase and also becomes slightly constant
for networks with more that 4 hidden neurons.
The maximum value of y corresponds to a
number of hidden neurons of 3 indicating that
a model with 4 hidden neurons (13 parame-
ters) is a good choice to approximate the func-
tion. Hence, the estimated value of y is coher-
ent with the variation of the error Fa.

The results obtained in the original analy-
sis, are also shown in Table 7. The value of Ea
is found to be about 0.11 that is lower than the
one calculated in the current analysis (0.17).
Such a difference in Ea can be explained by
the noise added on the training data. Figure 7
shows the histogram of the errors when a 1 %
6x1 MLP is trained for 100 training sets with
different noise realizations. The noise has the
same variance of 0.01 in each data set. Among
the 100 cases, we obtain an error between 0.10
and 0.12 for about 15 cases. Hence, the results
of the original analysis corresponds to the best
cases of the current analysis.

6 Perspectives

A model of a feed-forward network has
been implemented and described. It has been
shown that the algorithms have been correctly

@

&

s

number of occurence
w

5]

#10 0.15 0.20 0.25 0.30 0.35 0.40
E,

Histogram of the error from a 1 X6 X 1
network for a 100 tfraining

The differences between each training are the
initial weights and the noise on the training
data. The error on the regularized MLP output
is Fa =0.17.

implemented. The steepest descent algorithm
used to calculate the networks parameters has
to be improved. Other improvements will be
included such as a better compression algo-
rithm or the use of covariance matrices instead
of scalars for the cost function regularization
parameters.

However, the current state of the model
allows to start the JEM/SMILES retrieval
study. The next steps of the study will be to
prepare a data base of simulated measure-
ments from 10000 atmospheric scenarios and
instrument noise. One part of the data base
will be used in the training procedure and the
other part to validate the results. A network
will be set to retrieve only one parameter fol-
lowing the setting used for the Odin/SMR
analysis. A compression level of the inputs
will be defined to well represent the SMILES
measurements and the best number of hidden
neurons will be estimated.

The performance of the retrieval procedure
will be studied in terms of vertical resolution,
retrieval accuracy and sensitivity to forward
model parameters errors.

Acknowledgments

P. Baron thanks the Japanese Society for
Promotion of Science (JSPS) for its support.

176 Journal of the National Institute of Information and Communications Technology Vol.54 Nos.1/2 2007

References

1

10

11

12

13

14

15

16

M. Shiotani, H. Masuko, the SMILES Science Team, and the SMILES Mission Team, “JEM/SMILES mis-
sion plan. NASDA Rep. Version 2.1, NAtional Space Development Agency (NASDA), Communications
Research Laboratory (CRL)", Koganei, Tokyo, 184-8795, Japan, November, 15 2002.
http://smiles.tksc.jaxa.jp/indexe.shtml.

C. D. Rodgers, “Inverse Methods for Atmospheric Sounding: Theory and practice, volume 2 of Series on
Atmospheric, Oceanic and Planetery Physics”, World Scientific. Singapore-New Jersey-London-Hong-
Kong, 2000.

Y. Kasai, C. Takahashi, S. Ochiai, P. Baron, J. Urban, T. Motoki, Y. Irimajiri, and A. Kleinboehl, “SMOCO:
a retrieval code for Super-conductive Sub-Millimetr Limb Emision Sounder (SMILES) on the International
Space Station”, JQSRT, 00:00-00, 2007. submitted.

C. M. Bishop. “Neural networks and their applications”, Rev Sci Instrum, 65(6):1803-1832, June 1994,

F. Aires, C. Prigent, W. B. Rossow, and M. Rothstein, “A new neural network approach including first
guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emis-
sivities over land from satellite microwave observations”, J. Geophys. Res., 106:14887-14908, 2001.

C. Clerbaux, J. Hadji-Lazaro, S. Payan, C. Camy-Peyret, J. Wang, D. P. Edwards, and M. Luo, “Retrieval
of CO from nadir remote-sensing. measurements in the infrared by use of four. different inversion algo-
rithms”, Applied Optics, 41(33), 2002.

W. J. Blackwell, “A neural-network technique for the retrieval of atmospheric temperature and moisture
profiles from high spectral resolution sounding data”, IEEE Transactions on geoscience and remote
sensing, 43:2535-2546, 2005.

C. Jiménez and P. Eriksson, “A neural network technique for retrieving atmospheric species from
microwave limb sounders”, Radio Sci., 36(5):941-953, 2001.

C. Jiménez, “A neural network technique for retrieving atmospheric species from microwave limb
sounders”, PhD thesis, Chalmers University, Géteborg, Sweden, 2003.

J. Escobar Munoz, “Base de Données pour la Restitution de Paramétres Atmosphériques & I'Echelle
Globale - Etude sur I'lnversion par Réseaux de Neurones des Données des Sondeurs Verticaux Atmo-
sphériques Satellitaires présents et a venir”, PhD thesis, Université de Paris VII, France, 1993.

C. Jiménez, P. Eriksson, and D. Murtagh, “First inversions of observed sub-millimetre limb sounding
radiances by neural networks”, J. Geophys. Res., 108(24):4791, 2003.

M. D. Mdller, A. K. Kaifel, M. Weber, S. Tellmann, J. P. Burrows, and D. Loyola, “Ozone profile retrieval
from GOME data using a neural network approach (NNORSY)”, J. Geophys. Res., 108:4497, 2003.

F. Karbou, F. Aires, C. Prigent, and L. Eymard, “Potential of Advanced Microwave Sounding Unit-A
(AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land”,
Journal of Geophysical Research (Atmospheres), 110(D9):7109 -+, April 2005.

C. Jiménez, P. Eriksson, and D. Murtagh, “Inversion of Odin limb sounding sub-millimeter observations
by a neural network technique”, Radio Sci., 38(4):8602, 2003.

D. P. Murtagh, U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P. Eriksson, C. Jiménez,
G. Mégie, J. de La Noé, P. Ricaud, P. Baron, J. R. Pardo, A. Hauchecorne, E. J. Llewellyn, D. A. Degen-
stein, R. L. Gattinger, N. D. Lloyd, W. F. J. Evans, |. C. McDade, C. S. Haley, C. Sioris, C. von Savigny,
B. H. Solheim, J. C. McConnell, K. Strong, E. H. Richardson, G. W. Leppelmeier, E. Kyréla, H. Auvinen,
and L. Oikarinen, “An overview of the Odin atmospheric mission”, Can. J. Phys., 80(4):309-318, 2002.

M. Van der Baan and C. Jutten, “Neural networks in geophysical applications”, Geophysics, 65:1032-1047.

Philippe BARON et al. 177

17 F. Aires, W. B. Rossow, N. Scott, and A. Chedin, “Remote sensing from the iasi instrument. 1 compres-
sion, de-noising, and first-guess retrieval algorithms”, J. Geophys. Res., 107(D22), 2002.

18 F. Aires, A. Chedin, N. Scott, and W. B. Rossow, “A regularized neural network approach for retrieval of
atmospheric and surface temperatures with the iasi instrument”, Journal of Applied Meteorology,
41(2):144-159, 2002. 14

19 M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt algorithm”, /EEE
Transactions on Neural Networks, 5:989-993, 1994.

20 D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural networks by choosing initial
values of the adaptive weights”, International Joint Conference of Neural Network, 3:21-26, 1990.

21 David J. C. MacKay, “Bayesian interpolation”, Neural Comput., 4(3):415-447, 1992.

22 D. J. C. MacKay, “Probable networks and plausible predictions — a review of practical Bayesian meth-
ods for supervised neural networks”, Network: Computation in Neural Systems, 6:469-505, 1995.

23 F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to bayesian learning”, In Proceedings of
the 1997 IEEE International Conference on Neural Networks., pages 1930-1935, 1997.

24 S. Gutjahr, “Improving the determination of the hyperparameters in bayesian learning”, In Proceedings
of the ACNN 98, Brisbane, 1998.

25 Jan Poland, “On the robustness of update strategies for the bayesian hyperparameter alpha”, 2001. 15

Philippe BARON, Ph.D.

Guest Researcher, Environment Sens-
ing and Network Group, Applied Elec-
tromagnetic Research Center

Jana MENDROK, Ph.D.

Expert Researcher, Environment Sens-
ing and Network Group, Applied Elec-
tromagnetic Research Center

Development of Forward and Retrieval
Models for Atmospheric Remote Sens-

ing

Radiative Transfer Modeling and
Cloud Remote Sensing

KASAI Yasuko, Dr. Sci.

Senior Researcher, Environment Sens-
§ ing and Network Group, Applied Elec-
| tromagnetic Research Center

I' Spectroscopic Remote Sensing of
IR Atmosphere

178 Journal of the National Institute of Information and Communications Technology Vol.54 Nos.1/2 2007

