4 Social Interaction

4-1 Basic Study for Cognition and
Manipulation of the Body Image

MAEKAWA Satoshi

In recent years, it becomes clear that the body image is not inherent, but have plasticity. This
fact suggests that the body image can be manipulated. With the progress of the computer, virtu-
al external world can be built with reality, but the ability of the body image manipulation suggests
virtual self with reality. Although the cognitive ability of human is limited, the world of virtual self
with reality, which means freedom from physical body, may be very vast. However, the compre-
hension level about virtual self is just low so far, and a basic study of it is conducted as before.
In this paper, estimation methods of amputee’s motor intention from surface electromyography
measured noninvasively, are proposed, and the results of psychological experiments about body

image are shown.
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1 Introduction

In recent years, studies have begun to
reveal that an individual’s conception of his or
her body image is not inherent and instead fea-
tures notable plasticity[1]. It is therefore possi-
ble in principle to manipulate body image.
Progress in computer technology has allowed
us to construct an ultra-realistic virtual world
that closely reflects the real world; however,
the manipulation of body image must go a
step beyond this virtual world to enable the
creation of a realistic virtual self. Although
there are limits to human cognitive ability,
such virtual body imaging may open the door
to a vast and unprecedented world free from
the restrictions of the physical body. However,
at present, knowledge of the virtual self is still
limited; we are still at the stage of basic
research. In the present paper, we will propose
a non-invasive detection method for motor

intention by surface electromyography that
will enable us to investigate the phantom limb
phenomenon found in amputees, and will
introduce the results of a basic psychological
experiment conducted to study the cognitive
processes involved in a body image with plas-
ticity. A study of the decomposition of motor
units — the minimum units of muscle move-
ment from multi-channel surface electromyog-
raphy — will be introduced in Section 2, and
our basic understanding of body image cogni-
tion to date will be introduced in Section 3.

2 Decomposition of motor units
based on surface
electromyography

2.1 Surface electromyography

The motor unit (MU) is the minimum
functional unit of muscles, and consists of a
single « motor neuron within the spinal cord
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and a group of muscle fibers controlled by the
neuron. The contraction of a muscle generates
MU action potentials (MUAPs), which can be
measured to study the activity of MUs. How-
ever, muscle activity normally involves simul-
taneous activation of multiple MUs. There-
fore, the observed electromyography (EMGQG)
will be the result of the superposition of all
MU activity. Thus, the decomposition of MU
activity is essential to a complete understand-
ing of muscle activity, and — along with the
identification of MU activity — forms an
important element of current research.

Surface EMG (SEMG) measures the tem-
poral changes in electric potential produced on
the surface of the skin due to the migration of
local depolarization in the muscle fiber within
body tissue at speeds of 2-6 m/s. Generally, a
point of depolarization initially positioned at a
distance gradually approaches the electrode,
passes in proximity to the instrument, and
moves away. This process corresponds to
measurement of SEMG through a non-causal
filter. When observed as an impulse response,
this process is seen as a gradual increase in
amplitude to the peak of the signal, followed
by a gradual attenuation.

To check the general characteristics of the
sEMG signal, we will first examine a synthe-
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sized virtual SEMG signal. For simplicity, a
semi-infinite conducting region with planar
boundaries is assumed. Within this conductive
body, a current dipole 1 mm in length is
moved at 3 m/s at a depth of 1 cm. The elec-
tric potential induced by the dipole will be
measured as it passes directly below two elec-
trodes placed 1 cm apart on the surface of the
conductive body. The sampling frequency is
set at 1 kHz. Figure 1 (left) shows the change
in electric potential observed in the signal for
an adequate time frame. The actual duration of
the impulse response depends on the position
of the motor endplate and the tendon, but here,
this period was assumed to be approximately
50 ms, equivalent to an assumed muscle-fiber
length of approximately 150 mm.

Figure 1 (right) shows the pole and zeros
determined using this signal as the impulse
response. It can be seen from the figure that
the zeros fall outside of the unit circle. In
other words, the SEMG signals were found to
be non-minimum phases.

Since the non-minimum phase filter has
zeros outside of the unit circle, we must make
allowances for a phase lag when making cal-
culations for the inverse filter, or deconvolu-
tion. Therefore, in order to extract MU from
sEMG, a decomposition method must be
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applied that can handle non-minimum phase
characteristics.

2.2 MU decomposition by blind
deconvolutionis;

A method of blind deconvolution for non-
minimum phase characteristics has been pro-
posed by Zhang et al.[2], and we will attempt
to approach MU decomposition using this
method. The procedure is as outlined below.
When it is assumed that an n number of time-
series signals, s(r) = [sl(t),---,sn (t)]T, statistical-
ly independent in time and space, are passed
through a mixed filter A(z™") having non-min-
imum phase characteristics, and that the
resulting signal observed for time 7 is repre-
sented by x(¢) =[x,(2),---,x,(£)]", then the multi-
channel blind deconvolution method will
decompose the signal into independent com-
ponents y(7)=[y,("), -, »,()]" using the follow-
ing relationship.

¥(0) = W(z )x() (1)
Here, z' is the time-lag operator. To address
the non-minimum phase characteristics, the
non-causal filter W(z™") is represented by

Wy(z )= 2 W, (e)z™, )
Based on the above, the independent compo-
nent y(z) may be expressed as follows.

y() = W(zHA(z)s(r) (3)

When W(z")A(z™") is equivalent to the unit
matrix, then y()=s(?), and the signal may be
fully reproduced. However, in reality, uncer-
tainties remain due to the symmetrical proper-
ties of the order of the indexes, scales of each
component, and the time lag.

Next, in order to simplify the calculations
for determining the inverse filter, W(z™") is
broken down into two single-sided FIR filters
L (causal) and R (non-causal). The mixed fil-
ter is assumed to be temporally invariable, and
the learning of the inverse filter is performed
according to

ML) =7 Y86~y (0)y (- )L =) (4)

AR(z) = -7 L @)p(y(O)u" ((+ DR —7)  (5)

=0

(r=0,--,N).

Note that R(0) is a unit matrix, and so learning
does not take place. Here, 7 is the learning
coefficient, ¢(y) is the non-linear function,
and L'(z)= 3" L' (r)z".

2.3 MU decomposition by
overcomplete representations

The blind deconvolution method introduced
in the previous section is a separation method
based on linear calculations, and thus cannot
handle cases in which the number of signal
sources exceeds that of the observed channels.
MU decomposition with overcomplete repre-
sentation is used to overcome this problem. To
apply this process to the decomposition of
multi-channel time-series signals, it is assumed
that identical bases — shifted by one-sample
intervals in the time axis direction — are placed
throughout the target time frame(7].

The derivation process for overcomplete
representation is reported in detail in Lewicki et
al.[41-61, and so only a brief summary will be
given here. It is assumed that the L-dimension-
al observed signal x may be expressed as fol-
lows using the M-dimensional signal source s.

X=As+¢g (6)

Here, A 1s a L x M base matrix. In order for
this matrix to be overcomplete, L. < M, so even
if A were defined, the signal source s cannot
be determined straightforwardly for the
observed signal x. Note that ¢ is Gaussian
noise and gg' = A"'I. Based on the above, the
probability of observation of observed signal x
for a given base and signal can be expressed as

P(x|A,s) exp{—%a%}, (7

since &=x—As. The purpose of the overcom-
plete representation analysis is to estimate the
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most plausible base A and signal source s
from the observed signal x.

First, we will deal with the estimation of the
signal source s. When P(s) is the a priori prob-

A
ability for s and R(s) = EST*J and S(s)= —logP(s),

the estimated value s may be given by maxi-
mum a posteriori probability (MAP) as

s =argmaxlogP(s| A, x)

(®)
=arg rnsin[R(s) + S(s)] .

Since a super Gaussian distribution having
statistically  independent  variables
(P(s) =11, P(s,)) may be given as P(s), the a
priori probability of s, S(s) = -2, logP(s,), may
be regarded as an indicator of sparseness. More-
over, taking the fact that R is the squared error
of reconstruction into consideration, s may be
regarded as the estimated signal source from
which the observed signals may be reconstruct-
ed using the sparsest expressions possible. Note
that, in practice, the gradient method may be
utilized for determining s, and that it is suffi-
cient to solve the equation

% =1ATe—p(s). 9)

Here, ¢(s)=—-VlogP(s).

Next, we will present the learning algo-
rithm for determining the most suitable base
for the data structure. Here, the a posterior
probability for a given data item x is maxi-
mized based on the maximum likelihood esti-
mation method in order to determine the most
likely base A by the gradient method. The
objective function is given by the following
equations.

L  =E[logP(x|A)] (10)

P(x|A) = jp(x | A,s)P(s)ds (11)

Here, Gaussian integration is applied by
approximating the Gaussian distribution for
P(x| A,s)P(s) at s=s, and the learning equa-
tion is determined by differentiating the log
likelihood L by A. Furthermore, by taking the
natural gradient into consideration, the learn-

ing equation below is ultimately obtained.

AA = A (p(ST - AATAH ' (3)) (12)
Here,
H(s)=-AA"A™ —VV'P(s) (13)

where 7 is the learning coefficient. Note that
when 4 is sufficiently large, the following
approximation may be made.

AA =7A (@SB -T) (14)

2.4 Application to surface EMGis;
(1) Measurement of multi-channel SEMG

The two methods described above were
applied in practice to the measured multi-chan-
nel sSEMG [Fig. 2 (left)] in an attempt to esti-
mate MU. The 20,000-point data set, formed
of observations at intervals of 1 ms using a 16-
channel sSEMG to assess the generation of ten-
sile force in the fourth finger, was used as the
observed signal. Fig. 2 (right) presents the
observed signals for 1,000 ms excerpted from
the entire data set.
(2) MU decomposition by complete

representation

Figures 3 (left) and 3(right) present exam-
ples of the results of the blind deconvolution
method described in Section 2.2 and separa-
tion by the overcomplete representation analy-
sis described in Section 2.3, respectively. In
both examples, separation was performed using
all 16 channels, and three estimated source sig-
nals for which clear outputs appeared were
selected. Both feature successfully separated
signals believed to belong to 3 MUs. The con-
clusion that these three signals belonged to
three different MUs is consistent with statisti-
cal observations, such as the distribution of
amplitude and firing intervals.
(3) MU decomposition by overcomplete

representation

The results of overcomplete representation
analysis are shown in Fig. 4. Here, the
observed signals were limited to those from
2 channels to create an overcomplete condi-
tion. The channels selected were ch 5 and
ch 12, which were positioned far apart and
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both of which featured large signal power. In
this example, the two MUs seem at first glance
to be separated relatively clearly. However,
upon closer inspection it may be seen that sep-
aration is incomplete for MU 1. The coefficient
of correlation to the separated signal MU 1 in
Fig. 3 (right) is 0.33; a certain degree of posi-
tive correlation was therefore confirmed. For
artificially synthesized signals, it has been con-
firmed that three source signals may be suc-
cessfully estimated even with two-channel
observation. This suggests that MU decompo-
sition may be performed more clearly through
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selection of a certain number of observation
channels.

3 Cognition of body images:

3.1 Cognition with fingers crossed

An experiment was conducted in which
participants were asked to move the finger to
which tactile stimulation was applied, under
two different sets of conditions: one in which
the fingers of both hands were placed over
each other, palms-down, so that the fingers on
both hands crossed (“crossed state™), and one
in which both hands were simply placed side
by side (“uncrossed state”), both for cases in
which the hands were visible and invisible to
the subjects (Fig. 5). The results shown in

Uncrossed

Visibleg

Non-
visible

7l 53| Exercises in tactual stimulation
differentiation for crossed and

uncrossed fingers
45
40
£ 35
£ 20|
(]
Y 25
3 2
% 15
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5
0
cross uncross
posture

Number of ipsi-lateral hand errors

Fig. 6 indicate that although most errors were
ipsi-lateral — meaning that the motor
response occurred on a different finger in the
same hand as the stimulated finger — there
were also many cases of contra-lateral hand
errors in which the motor response occurred
on a finger on the other hand. Furthermore,
while the ipsi-lateral errors appeared to be
unrelated to posture or visibility, the tendency
of contra-lateral errors increased with crossed
fingers. Visibility also seemed to enhance,
although only slightly, the probability of con-
tra-lateral error.

The task in the present experiment required
the tactually stimulated finger to be moved, so
this task may be considered to have extremely
high SR compatibility, which means that only
somatosensory information is essential for its
execution. However, in contrast to such expec-
tations, the contra-lateral error occurring with
the fingers crossed implies that error may be
made in spatial vicinities within space coordi-
nates where the fingers are crossed. The results
of this task lead us to the conclusion that not
only somatosensory coordinates but also space
coordinates are employed in such motor
response.

Furthermore, although small, the effect of
body visibility is notable. With subjects’ fin-
gers crossed, contra-lateral error increases
even without body visibility, and we therefore

40 M visible
® 35 [ nonvisible
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7= .31 Number of errors in tactile finger discrimination task with crossed and uncrossed fingers
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conclude that proprioception is sufficient for
the construction of body image in space coor-
dinates.

3.2 The effects of body visibility

In the present section we examine the
effects of body visibility on body image cog-
nition. Figure 7 presents the various visual
sensation conditions employed: (1) actual
body view, (2) a photograph resembling the
actual posture, (3) a line drawing resembling
the actual posture, and (4) a neutral object.
The sense of reality is expected to decrease
from the actual body view through the remain-
ing items, in order. The exercise employed the
same tactile discrimination scheme described
in Section 3.1.

Figure 8 shows the experimental results
for contra-lateral errors. These results show a
maximum degree of difference between the
actual body view (1) and the photographed
view (2), which views presumably present the

minimum difference in visual stimulation.
There were no statistical differences between
the results with an actual body view (1) and a
neutral object (4), which corresponds to the
maximum difference in visual stimulation.
These results seem puzzling, with differences
observed for similar situations but not for
vastly different conditions.

In the absence of any model to explain such
phenomenon, we will propose a hypothesis
beginning from certain reports — involving so-
called “mirror neurons” — that may prove rele-
vant[10]-[12]. However, the mirror neurons in
these studies are explained as neurons that per-
form coding of an identical motion between the
self and a non-self other, leading to the conclu-
sion that such neuronal mechanisms should,
strictly speaking, be distinguished from the
mechanisms of static posture phenomena (as in
the present experiment). Nevertheless, the pres-
ence of some mirror-neuron-like neuron that
fires for an identical static posture — regardless

Four conditions for examining the effects of body visibility

14
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10 ek

Number of errors

Actual finger Photograph

t(42)=2.38, p<.05

t{42)=3.37, p=.01

Meutral
object

Line drawing

\Zle:5 Number of contra-lateral errors for the respective visibility states
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of whether the identical posture is of the self or
the non-self — may explain the above phenom-
enon quite well, as described further below.

The difference between (1) and (2) lies in
the question of whether or not minute motion
in the fingers can be perceived. Thus, the par-
ticipant is able to see the minute motion asso-
ciated with the motor command of the self in
state (1), while such motion cannot be
observed at all in state (2), even though the
motor command has been sent. This may
result in registration of the body image visual-
ly presented in state (2) as a non-self image,
even though it does not visually conflict with
the actual body self.

Let us assume here that a certain neuron is
responsible for the coding of space coordi-
nates for the crossed-finger posture, albeit
with differences between self and non-self sit-
uations. As described in Section 3.1, this neu-
ron should be responsible for tactile finger dis-
crimination under both directly visible and
completely blind conditions. In such a case,
what would happen if this neuron were to be
used for the non-self, like the photographed
view in state (2)? Simultaneous neuron firing
will be involved in determining the self/non-
self attribution. In other words, binding will
occur through simultaneous firing. In the non-
self firing, binding may not take place between
the processing paths executing the finger dis-
crimination task. This means that there will be
no intervention in the processing system of
space coordinate coding by the neuron, and as
a result the number of contra-lateral errors will
be reduced.

The above may be summarized as follows.
First, a certain neuron performs coding of
space coordinates for a static posture. This
neuron will fire for both proprioception and
visual body image. When a photograph con-
taining identical posture information is provid-
ed as the visual body image, this neuron will
be active with visual dominance, and will code
the viewed posture as non-self. In other words,
the resources regarding the self/non-self
(specifically, the neurons that code a given sta-
tic posture in space coordinates) will compete

with one another, and the coding resource will
be used as the non-self posture, since this code
is given priority by visual dominance. As a
result, the processing system for finger dis-
crimination will only be able to use somatosen-
sory information, and so contra-lateral error is
reduced.

The results of the present experiment may
also be interpreted as follows. Although there
is initially almost no difference between states
(1) and (4), the addition of the photograph in
state (2) results in the suppression of contra-
lateral errors, whose occurrence normally
would not have conflicted with the given con-
ditions due to its proximity in the visual map.
At first glance, this phenomenon seems in
direct opposition to visual dominance, a char-
acteristic well known in psychology. However,
based on the interpretation provided above, the
phenomenon may be understood as a suppres-
sion mechanism caused by competition among
resources resulting from visual dominance, and
thus does not conflict with past findings.

4 Conclusions

In the present paper it was first shown that
surface EMG has non-minimum phase charac-
teristics, and that motor unit decomposition
may be performed by applying a multi-chan-
nel blind deconvolution method that can han-
dle such characteristics. Further, overcomplete
representation analysis may be expanded for
application to multi-channel time-series sig-
nals by providing bases with symmetry for
shifting along the time axis, thus enabling
application in SEMG. Results indicate that it
may be possible to extract MU featuring a
number of channels in excess of the number of
those observed.

We have also conducted a psychological
experiment on the effects of body visibility on
body-image construction. The effects of
self/non-self attribution on the processing path
were discussed and a new model proposed.

The present research is a part of the Grant-
in-Aid for Scientific Research (B)(2),
“Research on the Visualization of Motor Unit
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Activity by Surface EMG” in 2003-2004 and in Humans For Virtual Body Imaging of Self”
Scientific Research (B)(2), “Basic Psychologi- in 2005-2007.
cal Research on the Body Recognition Process
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