
1 Introduction

People tend to assume that cryptography is
principally used to ensure security in commu-
nications, as in the case of SSH and SSL tech-
nologies. In this paper, on the other hand, we
discuss an innovative application of cryptogra-
phy referred to as Secure Computation. Secure
Computation was initially proposed by
Andrew Chi-Chih Yao, who won the Turing
award in 2000, launched by the problem he
formulated below［7］.

Assume that two rich people, Alice and
Bob, meet on the road. They want to find
out which of them has more money. How-
ever, each wants to avoid letting the other
know how much they have in their pocket.

Without this restriction, there would be no
problem: Alice and Bob would compare
amounts, and both would know who was rich-
er. The question in this case is whether there is
a solution that answers the same question
without revealing to either party the amount of
money in the other’s pocket. Surprisingly, Yao
applied cryptographic techniques to come up
with just such a solution. The topic discussed
in this article is closely related to this problem
and is referred to as the “secure set-intersec-
tion protocol”. The problem we consider here
can be set forth as below, in a manner similar
to the presentation of the problem above.

Alice and Bob have secret sets, SA and
SB, respectively. They want to know only
the set intersection of SA and SB. Howev-

9NOJIMA Ryo

3 Applied Cryptography

3-1 On the Construction of Fast Secure
Set-Intersection Protocols

NOJIMA Ryo

In this paper, we consider a two-party secure set-intersection protocol. In this protocol, there
are two parties, a server and a client, and they have secret-sets QS and QC, respectively, where
|QS|= |QC|= n. The goal of the protocol is the client obtaining SA∩SB while preserving the
secret-sets secret. We introduce three protocols which implement this functionality in this paper.
In the first protocol, we concentrate on the communication complexity and show that the protocol
matches the lower bound. In the second protocol, we design the protocol based on the protocol
proposed by Freedman et al. Compared to the other efficient protocols, this protocol is more
secure and is adequate for the practical use. In the last protocol, we concentrate on reducing the
time-complexity. In other existent protocols, at least one party needs to perform O(n log n) oper-
ations. However, in our protocol, the time-complexity is reduced to O(n). The essential idea
behind the protocol is the employment of the approximation algorithm for the Jaccard’s distance.
We examine these three protocols in detail in this paper.

Keywords
Secure computation, Additive homomorphic cryptosystems, Set-intersection

10 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

er, they want to avoid revealing to the
other any of the other elements of the
secret sets.

For example, let us assume SA = {1, 345,
787, 88} and SB = {9893, 3232, 89, 345}. As
SA∩SB = {345}, we want to let Alice and Bob
acquire only SA∩SB = {345} without Alice’s
disclosure of {1, 787, 88} or Bob’s {9893,
3232, 89}. The solution to this problem was
proposed by Freedman et al.［3］. We improved
this protocol and designed a resulting system
capable of identifying a spear attack［8］.

As the title indicates, this article discusses
the acceleration of the secure set-intersection
protocol. If we are to construct a rapid proto-
col, it must feature high algorithmic efficien-
cy. To ensure such efficiency, we need to take
time complexity and communication complex-
ity into consideration. This article describes
three protocols for implementing the secure
set-intersection protocol and discusses the
time complexity, communication complexity,
and security of these protocols. Each of the
three protocols has distinct features. The first
protocol is most suited to handling communi-
cation complexity. The second protocol is
based on that proposed by Freedman et al.,
with a slight modification that significantly
improves security. This protocol is the most
secure among the three. The third protocol is
focused on time complexity and is designed to
operate more rapidly than the remaining two
protocols.

2 Preliminary

2.1 Additive homomorphic
cryptosystem

First, let us briefly describe a public key
cryptosystem. In a public key cryptosystem,
the public key, pk, for encryption differs from
the secret key, sk, for decryption. The user, or
receiver, possessing the secret key sk publish-
es only the public key pk. The sender of the
message uses pk to encrypt the message and to
send it to the receiver. The receiver uses sk to

decrypt the ciphertext in order to obtain the
original message. Here, we denote the cipher-
text of the message, m, as Enc (m). An addi-
tive homomorphic cryptosystem can produce
Enc (m1＋ m2) from Enc (m1) and Enc (m2)
without the secret key sk. Cryptosystems of
this type include Paillier cryptosystem［6］and
ElGamal cryptosystem［2］.

2.2 Problem establishment
Let us denote the sets that Alice and Bob

secretly hold as SA and SB, respectively. Here,
SA, SB⊆U = {1, 2, …, N}, where U is a univer-
sal set. For simplicity, we assume |SA| = |SB| = n.

A range of different secure set-intersection
protocols is available. This article concen-
trates on the particular problems below.

Problem 1:
Input: Alice’s input is SA, and Bob’s input is

SB.
Bob’s output: Set intersection of SA and SB

Problem 2:
Input: Alice’s input is SA, and Bob’s input is

SB.
Bob’s output: Number of set intersections of

SA and SB

When assessing the “efficiency” of the
protocol, we need to consider the two factors
below.

1. Time complexity
— Sum of the time required for all

users to end the protocol
2. Communication complexity

— Sum of the size of the data transmit-
ted in the communication channel

To construct an efficient protocol, the
above two factors must be minimized to the
full extent possible. Obviously, if there is a
protocol that solves Problem 1 for time O(t)
and communication O(c), then there is a pro-
tocol that solves Problem 2 with time O(t＋
n log n) and communication O(c). However,
the inverse does not generally hold. Thus, we
can presume that it will be easier to construct
a protocol that solves Problem 2.

11NOJIMA Ryo

3 Exact secure set-intersection
protocol

In this article, we first consider the con-
struction of a non-secure set-intersection pro-
tocol, followed by a method to make the pro-
tocol secure.

Let us consider the vector representation
of a set. In other words, let S denote a set and
V denote a vector of length N. Then, we
define V [x － 1] = 1 if x∈ S, and V [x － 1] = 0
if x∈/ S. For example, if U = {1, 2, 3, 4, 5}
and S = {1, 3, 5}, the vector representation, V,
of S is V = [1, 0, 1, 0, 1].

Protocol 1
Input: Alice’s input is SA, and Bob’s input is

SB.
Step 1: Alice converts SA to vector VA, and

sends the vector to Bob.
Step 2: Bob outputs the set intersection from

VA and SB.

Here, the communication complexity (in
other words, the number of bits transmitted in
the communication channel) of this simple
protocol is N. The problem we now consider is
whether any other protocol exists featuring a
smaller communication complexity. Unfortu-
nately, there is no such protocol. This conclu-
sion can be obtained by slightly modifying the
result in［4］.

Theorem 1: There is no set-intersection proto-
col with a communication com-
plexity smaller than N.

Proof: This theorem can be proved by the con-
tradiction.

Let us assume that there is a protocol that
can produce a set intersection with a commu-
nication complexity of N － 1 bits. Based on
this assumption, the number of different pat-
terns of information that flows between the
two parties is 2 N－1 at most. Let us consider
two pairs of different input patterns: (A, A’)
and (B, B’). Here, let us express X’ = U － X
for set X. As A, B⊆ {1, …, N}, there are 2N

input patterns. According to the pigeonhole

principle, there must be input pairs (A, A’) and
(B, B’) that share the same communication
sequence. Here, for sets S1 and S2, let us
denote DJ(S1, S2) = 0 if S1∩S2 =φ, and DJ(S1,
S2) = 1 in other cases. Using this notation, we
can make DJ(A, A’) = DJ(B, B’) = 0 and DJ(B,
A’) = 1. Here, we consider the case in which
the input pairs are (A, A’) and (B, A’). When
Alice sends the first message, she sends the
same message to Bob whether the input is A or
B. As Bob’s input is A’, he sends the same
message whether Alice’s input is A or B. This
situation continues until the end of the proto-
col. Consequently, the input pairs (A, A’) and
(B, A’) feature the same communication pat-
tern throughout. Thus, for inputs (A, A’) and
(B, A’), Bob produces the same output. How-
ever, as DJ(A, A’) ≠ DJ(B, A’), the protocol
produces erroneous output. Therefore, the
communication complexity must be Ω(N).

Thus, no protocol exists with communica-
tion complexity or time complexity smaller
than N. Here, we are discussing the lower
bound of communication complexity. This
lower bound is closely related to the lower
bound of communication complexity in the
stream algorithm. For example, this lower
bound of the set intersection can reveal that no
space-efficient algorithm can be constructed to
detect a DoS attack and port scan［5］.

Let us now make Protocol 1 secure.

Secure set-intersection protocol (Protocol 1)
Input: Alice’s input is SA(VA), pk, and Bob’s

input is SB (VB), pk, sk.
Step 1: Bob sends Enc(VB［0］), Enc(VB［1］), …,

and Enc (VB [N － 1]) to Alice.
Step 2: Alice calculates ci = Enc (ri (VB [i] －

VA[i]＋ i ＋ 1])) for each i and sends
{(i, ci)}i to Bob. Here, ri is a random
number selected for each i.

Step 3: Bob decrypts the ciphertext that he has
received and if the elements are
included in SB, he outputs them as
included in the set intersection.

Theorem 1 states that when the size of the

12 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

universal set is N, the cost of the communica-
tion is Ω(N). Particularly when the size n of
the set satisfies n log N < N, the protocol
below is more efficient.

Protocol 2:
Input: Alice’s input is SA, and Bob’s input is

SB.
Step 1: Alice sends each element of SA to Bob.
Step 2: Bob outputs the set intersection of SA

and SB.

The communication complexity of this pro-
tocol is n log N. In other words, if N > n log N,
this protocol is more efficient than Protocol 1 in
both time complexity and communication com-
plexity.

We can consider the protocol below to
make the protocol above secure.

Secure set-intersection protocol (Protocol 2)
Input: Alice’s input is SA = {a1, …, an}, pk, and

Bob’s input is SB = {b1, …, bn}, pk, sk.
Step 1: Bob sends Enc(b1), Enc(b2), …, and

Enc(bn) to Alice.
Step 2: Alice sends Enc(rij (bi－ aj) ＋ aj) for

each i and j. Here, rij is a random num-
ber.

Step 3: Bob decrypts the ciphertext that he has
received, and if the plaintext is includ-
ed in SB, he outputs it as included in
the set intersection.

The communication complexity of this
protocol is O(n2) and may not always be effi-
cient. The solution to this problem was pro-
posed by Freedman et al.［3］. However, we
needed to modify Freedman’s protocol slightly
to make it secure. Thus, here we indicate the
modified protocol.

Secure set-intersection protocol
(Modified Protocol 2)
Input: Alice’s input is SA = {a1, …, an}, pk, and

Bob’s input is SB = {b1, …, bn}, pk, sk.
Step 1: Bob encrypts each ci in f (X) = Xn＋

cn－1Xn－1＋…＋ c0 = (X － b1) (X － b2)…
(X － bn) and sends them to Alice.

Step 2: Alice sends Enc(rj f (aj)＋ aj) for each
j to Bob.

Step 3: Bob decrypts the ciphertext that he has
received, and if the plaintext is includ-
ed in SB, he outputs it as included in
the set intersection.

The communication complexity of this
protocol is O(n), a significant improvement
compared to O(n2) of Protocol 2.

When we implement this protocol using
the bucket allocation technique, we can some-
times speed up the process as much as 20-fold.

We used this protocol when we construct-
ed the spear-attack identification system［8］.

4 Approximate protocol

4.1 Approximate secure
set-intersection protocol

In the previous sections, we considered
protocols that output a set intersection. In this
section, we consider the construction of an
approximate protocol to acquire a fast-operat-
ing secure set-intersection protocol. The
approximate protocol here calculates the
approximate value of |SA∩SB| instead of calcu-
lating SA∩SB.

First, we introduce the family of min-wise
independent functions as a tool for acquiring
the approximate protocol.

Definition
[Family of min-wise independent functions［1］]
If a family of functions, H⊂ [N]→ [u], satisfies

Prh←H [h (x) = min{h (y)}|y∈ X}] = 1/|X|

for arbitrary X⊂ [N] and x∈ X, we say that
the family of functions satisfies min-wise
independence.

Lemma: When H is a family of min-wise
independent functions,

Prh←H [min{h(A)}= min{h(B)}]=|A∩B|/|A∪B|

holds for arbitrary A, B⊆ [N].

13NOJIMA Ryo

Let us define match(A, B) = |A∩B|/|A∪B|
and sum(A, B) = |A|＋ |B|. When we express
|A∩B | with match and sum, we have the
expression below.

|A∩B| = match(A, B) • sum(A, B) • (1＋
match(A, B))－1

In other words, acquiring the approximate
value for |A∩B| is equivalent to acquiring the
approximate value for |A∩B|/|A∪B|. Thus, in
this section, we consider the protocol for cal-
culating the approximate value of |A∩B|/|A∪
B|. First, we consider the non-secure protocol
as before.

Protocol 3:
Input: Alice’s input is SA, Bob’s input is SB,

and the common input is l.
Output: Alice’s output is none, and Bob’s out-

put is the approximate value of |SA∩SB|.
Step 1: Alice randomly selects l items of min-

wise independent functions and sends
them to Bob.

Step 2: Alice calculates(a1, …, al) = (min{h1

(SA)}, …, min{hl(SA)}). Bob similarly
calculates (b1, …, bl) = (min{h1(SB)},
…, min{hl(SB)}).

Step 3: Alice sends (a1, …, al) to Bob.
Step 4: Bob calculates |{1≤ i ≤ l | ai, = bi}|/l

and outputs the result.

4.2 Analysis
Here, we analyze the degree of difference

between |{1≤ i ≤ l |ai, = bi}|/l output by Bob
and |A∩B|/|A∪B|. The probability that the i-th
values match is |A∩B|/|A∪B| due to the nature
of the min-wise independent functions. Let us
consider a random variable, Xi, which takes
the value 1 when the i-th values match and 0
when the i-th values do not match. Let us cal-
culate the expectation and the variance of
this random variable. The expectation is E
[Xi] = 1 • Pr[Xi = 1]＋0 • Pr[Xi = 0] x= |A∩
B|/|A∪B|. The variance is Var[Xi] = E[Xi

2]－
E[Xi]2 by definition. Noting that E[Xi

2]=1 •
Pr[Xi= 1]＋ 0 • Pr[Xi = 0] = |A∩B|/|A∪B|, we
have |A∩B|/ |A∪B|－(|A∩B|/|A∪B|)2. Here,

we consider a new random variable X defined
as X = (X1＋ X2＋…＋ Xl)/l. Due to the lin-
earity of the expectation value, we obtain the
expression below.

E[X] = E[(X1＋ X2＋…＋ Xl)/l]
E[X] = E[(X1＋ X2＋…＋ Xl)]/l
E[X] = (E[X1]＋ E[X2]＋…＋ E[Xl])/l
E[X] = |A∩B|/|A∪B|

For the variance, we obtain the expression
below.

Var[X] = Var[(X1＋ X2＋…＋ Xl)/l]
Var[X] = Var[X 1/ l]＋ Var[X 2/ l]＋ …＋ Var

[Xl/l]
Var[X] = (|A∩B|/|A∪B|－(|A∩B|/|A∪B|)2)/l2

Thus, from Chebyshev’s inequality, the
relationship below holds for an arbitrary posi-
tive value of ε.

Pr[|X－ |A∩B|/|A∪B| |≥ε] ≤ (|A∩B|/|A∪B|－
(|A∩B|/|A∪B|)2) /l 2ε2

≤ 1/l 2ε2

Thus, we have acquired the probability
that the output of the algorithm is not |A∩B|/
|A∪B|.

4.3 Protocol for making Protocol 3
secure

In this section, we make Protocol 3, which
we evaluated in the previous section, secure.
To do so, we need to create an equivalence
checker using additive homomorphic cryp-
tosystems. In this protocol, Alice has x, and
Bob has y. Bob outputs 1 if x = y and outputs
0 in other cases.

Protocol for checking security equivalence
Input: Alice’s input is x, and Bob’s input is y.
Bob’s output: 1 if x = y, and 0 in other cases.
Step 1: Bob sends Enc(y) to Alice.
Step 2: Alice calculates Enc(r (x － y)＋ 1) and

sends the result to Bob.
Step 3: Bob decrypts the ciphertext that he has

received and outputs 1 if the result is 1

14 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

and 0 in other cases.

Now, we apply the protocol for checking
security equivalence, and make Protocol 3
secure.

Secure set-intersection protocol (Protocol 3)
Input: Alice’s input is SA, Bob’s input is SB,

and the common input is l.
Output: Alice’s output is none, and Bob’s output

is the approximate value of |SA∩SB|.
Step 1: Alice randomly selects l items of min-

wise independent functions and sends
them to Bob.

Step 2: Alice calculates (a1, …, al) = (min{h1

(SA)}, …, min{hl(SA)}). Bob similarly
calculates (b1, …, bl) = (min{h1(SB)},
…, min{hl(SB)}).

Step 3: Bob sends (Enc(b1), …, Enc(bl)) to
Alice.

Step 4: Alice sends (Enc(r1(a1－ b1)＋ 1), …,
Enc(rl(al－ bl)＋ 1)) to Bob.

Step 5: Bob decrypts the ciphertext and counts
the number of “1” responses. He out-
puts sum/l, where sum is the total
number of “1”.

5 Conclusions

As cryptographic protocols have been
mainly developed in theoretical studies, few
existing protocols can be put to practical soci-
etal application［8］. The secure set-intersection
protocol discussed in this article is a rare
example. We can nevertheless conclude that
cryptographic protocols developed in the
course of theoretical study retain the possibili-
ty of spurring an enormous field of research if
we remain sharply aware of the potential prac-
tical applications of these protocols.

Considering Internet applications alone,
we see a wide range of potential applications
of cryptographic protocols. For example,
traceback technology is aimed at tracking
users that have committed fraud. However,
this technology may also be used to invade the
privacy of authorized users who have not
committed fraud. Cryptographic technologies
can be used both to protect the privacy of
authorized users and to track unauthorized
users. The author’s next major research chal-
lenge is to design such a cryptographic proto-
col.

References
01 Andrei. Z. Broder, M. Charikar, Alan. M. Frieze, and Michael Mitzenmacher, “Min-Wise Independent Per-

mutations”, J. Compute. Syst. Sci. 60 (3), pp.630-659.

02 Taher ElGamal, “A Public-Key Cryptosystem and a Signature Based on Discrete Logarithms, IEEE

Transactions on Information Theory”, V.IT-31, N.4, 1985.

03 Michael J. Freedman, Kobbi Nissim, and Benny Pinkas, “Efficient Private Matching and Set Intersec-

tion”, EUROCRYPT 2004, pp.1-19.

04 Eyal Kushilevitz, and Noam Nissan, “Communication Complexity”, Cambridge University Press, 1997.

05 Kirill Levchenko, Ramamohan Paturi, and George Varghese, “On the Difficulty of Scalably Detecting

Network Attacks”, ACM Conference on Computer and Communication Security 2004, pp.12-20.

06 Pascal Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Class”, EURO-

CRYPT 1999, pp.223-238.

07 Andrew Chi-Chih Yao, “Protocols for Secure Computations”, FOCS 1982, pp.160-164.

08 Starting collaborative demonstration experiment to realize a systemfor detecting targeted cyber attacks-

Toward realizing a system detecting the cyber attacks against a particular organization-,

http://www.nict.go.jp/news/h19-press.html, 2008

15NOJIMA Ryo

NOJIMA Ryo, Dr. Eng.

Researcher, Traceable Secure Network
Group, Information Security Research
Center

Algorithm, Cryptography

