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1  Introduction

Signal transduction plays a crucial role in
the complex dynamics of living cells to the
extent that it is considered a fundamental
information processing mechanism in living
systems.  The recent availability of data on
signal transduction has the potential for the
creation of artificial systems conducting com-
putation and communication using its inherent
mechanisms.  It also promises to give inspira-
tion on building computation and communica-
tion systems in our world that are based on
novel principles only used to date in biological
organisms.

It is yet unknown what advantages can be
gained from using biologically-inspired mech-
anisms in the application to information pro-

cessing systems, but given the high efficiency
by which biological organisms function, it
makes sense to study them, especially in the
framework of an information processing para-
digm.  The boundary conditions of the
processes in biological systems tend to be
quite different from what we are used to in our
daily lives.  Noise, for example, is large com-
pared to signal levels.  Mechanisms to cope
with it in traditional systems include error cor-
recting codes, and it is an interesting issue to
investigate whether and to what extent such
techniques are applicable in biological sys-
tems.  To investigate issues like these it is
important to have a formal model describing
biological signal transduction. The most com-
monly used model is the network, which has
topological features such as hubs in a scale-
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free network［1］. This suggest the exploration
of efficient ways to systematically understand
the robustness of networks in terms of graphs,
where the building block of the signal trans-
duction networks that are treated as complex
systems called network motif in［2］are defined.
Based on the technology of networks, we can
model the dynamics of signal transduction
networks and find a quantitative description of
its signaling mechanism that sustains the
robustness of the corresponding cellular sig-
naling processes, which have been widely
reported in the signal transduction networks
for chemotaxis, heat shock response, ultrasen-
sitivity, and cell cycle control［3］.

In this paper, we formulate a model of sig-
nal transduction in terms of graph theory in
order to increase our understanding of its
information processing role in biological sys-
tems. A graph is a set of nodes, the so-called
vertexes, with relations between them called
the edges. In the framework of a communica-
tion network, for example, the edges represent
the communication channels between the
nodes between which communication takes
place.  Applied to biological systems, we
obtain a formulation of the structure of signal-
ing pathways of signal transduction.  We illus-
trate our concepts through a particular protein
called MAPK (Mitogen-Activating Protein
Kinase), which plays an important role in
intra-cellular communication processes.  We
then add concepts related to error correcting
codes to study how robustness of the above
processes can be improved, as well as a new
concept of fixed points in biological systems,
which serve to restore signals through nonlin-
ear dynamics with feedback.

This paper is focused on computational
aspects of signal transduction in cells. In Sec-
tion 2, based on the biochemical features of
signal transduction processes, the data struc-
ture of a graph is presented to formulate the
signaling pathway of signal transduction, in
which MAPK is discussed as an instance of
pathways for describing the dynamical
processes of signal transduction networks. In
Section 3, a fixed point phenomenon is stud-

ied as well as the robustness factor for devel-
oping molecular communication systems. In
Section 4, molecular codes for error correction
are described from the network level of signal
transduction.

2  Cellular signal transduction 
networks and their formal
model

Signal transduction in cells is a biochemi-
cal process that is of fundamental importance
for their functioning.  In living cells signal
transduction is carried out by series of bio-
chemical reactions that are regulated by genet-
ic factors.  The signals used in signal transduc-
tion are usually quantified by concentrations
of the corresponding chemicals.

2.1  Some preliminaries of the 
biochemistry of signal transduction

Cellular signal transduction is defined as a
phenomenon, process, or mechanism that real-
izes a series of biochemical reactions in cells
in response to stimuli of chemical signals out-
side the cells; this function includes so-called
cell communication.

Cell communication is the term used for
the communication processes in cells that take
the form of chemical signals and that is real-
ized by the biochemical reactions in cells
through cellular signal transduction.  Cell
communication can be distinguished into
inter-cellular and intra-cellular communica-
tions.

Inter-cell communication describes how
cells interact with each other.  An important
mechanism in inter-cell communication is
formed by signaling molecules, which are also
known as first messengers.  Inter-cell commu-
nication has four types［4］: (1) contact-depen-
dent signaling, in which cells have direct
membrane-to-membrane contact to exchange
signals, (2) paracrine signaling, in which cells
release signals into the extracellular space to
act locally on neighboring cells, (3) synaptic
signaling, in which neuronal cells transmit sig-
nals electrically along their axons and release
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neurotransmitters at synapses, and (4)
endocrine signaling, in which hormonal sig-
nals are secreted into the blood stream to be
distributed on a wide scale throughout an
organism’s body.

Intra-cell communication concerns the
communication within cells.  When an incom-
ing first messenger molecule reaches a cell, it
cannot directly pass the cell membrane, but is
bound by specific receptors that effectuate the
activation of certain signaling molecule pro-
teins within the cell.  Referred to as secondary
messengers, these signals are relayed by a
chemical reaction process through a signaling
cascade, which relays the signals to the nucle-
us of the cell.  In this paper we will mainly
write about intra-cell communication.  Impor-
tant signaling molecules in cells are proteins.
We will be especially interested in proteins
that can bind to a phosphate molecule.  Such
proteins are called phospho-proteins.  When a
phosphate is attached to a protein it becomes
phosphorylized through a phosphorylation
process; when it becomes detached it becomes
dephosphorylized through a dephosphoryla-
tion process.  To switch between the two
states, special enzymes are required.  The
enzyme that realizes phosphorylation is called
kinase, the enzyme that realizes dephosphory-
lation is called phosphatase.

The phosphorylation / dephosphorylation
state of a protein will be used in the following
to encode the binary state of a variable.  This
state can be detected by immunofluorescence
analysis, which provides us with a possible
tool to read out such a variable.

The signaling pathway in cells is a series
of biochemical reactions, which have specific
biological functions.

2.2  Graph representation for signal 
transduction

The reactions in a signaling pathway will
be described by a directed graph with input
and output.  By the graph representation, we
can get the information form of the signal
transduction network, from which we can
investigate the structure, encoding, and net-

works of signal transduction in cells.
To study the structural relations concern-

ing the transduction of signals, we define
transduction in a spatial form as a graph.  Let
a molecule be represented by a vertex (node)
in a graph and let a biochemical reaction be
represented by an edge (link), then we obtain a
graph

G = <V, E>,

where the vertex set is defined as the set
V = {V1, V2, .., Vn} and the edge set is defined
as E = E ( Vi,Vj) ( Vi,Vj∈ V ).  Any parame-
ters of a biochemical reaction represented by
an edge are depicted as labels to that edge.

The direction of a biochemical reaction is
represented in this formalism by a directed
edge in the graph, which is graphically depict-
ed as an arrow from one vertex to another ver-
tex.  In case a biochemical reaction is bidirec-
tional, the corresponding edge is also bidirec-
tional, and it will be depicted as merely a line
between its vertices.  Figure 1 shows a graph
representing a pathway from a substrate vertex
to a product vertex.

The actual phosphorylation process follows
the so-called Michaelis-Menten equation［5］,
which appears in the graph as a label on the
edge between the substrate-vertex and the
product-vertex.  The Michaelis-Menten equa-
tion is described as follows. Let the reactant
denote the input to the pathway, then the prod-
uct is calculated by the Michaelis-Menten
equation as 

d/dt (product (t)) =
k3*enzyme*substrate (t) / (substrate (t) + km)

where product (t) is the product concentra-
tion at time t, substrate (t) is the substrate con-
centration, enzyme is the enzyme concentra-
tion, and k1, k2, and k3 are the coefficients of
the biochemical reaction, whereas km = k2 / k1

and it is assumed that k3 ≪ k2.
The above formalism is used for describ-

ing an individual pathway (Cf. Fig. 2). If a
pathway can not be divided into any other
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pathways, the pathway is called indivisible or
atomic.  Atomic pathways are the building
blocks from which more complex pathway
networks are constructed.  Such complex path-
ways are called interacted pathways.  The
entire pathway network will be constructed by
these building blocks.  In case of phosphoryla-
tion and dephosphorylation states, for exam-
ple, it is possible to switch between these
states via the interacted pathways that are reg-
ulated by kinases and phosphotases.

The interaction of different states needs to
be investigated considering their influence on
biological functions of cells. The MAPK cas-
cade is one of the important pathways with
such features.

2.3  Example: the MAPK cascade
A MAPK cascade is an important pathway

that is at the base of many biological functions

in cells, such as in a phosphorylation process.
Involved in a MAPK cascade is a number of
kinases with the following names:

MAPK: mitogen activating protein kinase,
MAPKK: mitogen activating protein

kinase kinase,
MAPKKK: mitogen activating protein

kinase kinase kinase,
MAPKKKK: mitogen activating protein

kinase kinase kinase kinase,

The resulting pathway is called k-layered,
with k being an integer denoting the number
of stages in the cascade.  The structures of two
MAPK cascades are is illustrated in Figs. 3
and 4. From top to down in the order going
from upstream to down stream, MAPKKKK
phosphorylates MAPKKK, MAPKKK phos-
phorylates MAPKK, MAPKK phosphorylates

Fig.1 A pathway: a graph vs. signals 

Fig.2 The concept of pathway as a system
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MAPK, which effectuates a phosphorylated
protein as output to the process.

When building information models of sig-
nal transduction, it is important to structurally
analyze the functionality of a signaling path-
way network.  As an example of a structural
model, we show the MAPK cascade of bud-
ding yeast Schizosaccharomyces pombe in
Fig. 4, which involves the kinases Ste 20,

Ste 11, Ste 7, Kss 1 / Fus 3 and Far 1 / Ste 12.
In this cascade, MAPKKKK is Ste 20, MAP-
KKK is Ste 11, MAPKK is Ste 7, and there are
two MAPK factors, Kss 1 and Fus 3.  Further-
more, there are proteins at the bottom of the
MAPK cascade, called Far 1 and Ste 12; these
proteins, which form the output of the cascade,
play an active role in the reproduction of cells.
In technical terms, Far 1 is a CDK (Cyclin-

Fig.4 An example of a MAPK cascade

Fig.3 The hierarchical structure of MAPK cascade
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Dependent Kinase) inhibitor, and Ste 2 is a TF
(Transcription Factor) Ste 12. Other examples
of signal pathways can be found in KEGG［6］.

Up to now we have witnessed that the
objects — nodes and links of pathway net-
works — can be represented by the vertexes
and edges of graphs. Accordingly, the dynam-
ics features of networks can be investigated
based on the computational formulation given
above.

3  Dynamical analysis of signal
transduction networks

3.1  Temporal dynamics of signal
transduction networks

Based on the graph structure we formulat-
ed in previous sections, we will discuss the
dynamical features of signal transduction net-
works in order to systematically understand
their information processing mechanism. Basi-
cally, the dynamics of signal transduction can
be investigated by two major aspects: spatial
dynamics and temporal dynamics of signal
transduction. In signal transduction, the spatial
dynamics is mainly reflected in diffusion
processes. Kholodenko’s review paper［7］on
spatial dynamics uses the diffusion equation
with polar coordinates to formulate the con-
centration values of kinases in the MAPK cas-
cade constrained by the distance of diffusion.

The current paper focuses mostly on the
information processing aspect of signal trans-
duction networks, which clearly have a tempo-
ral character, so we limit our discussion to the
temporal dynamics of signal transduction.
Such dynamics is usually formulated by dif-
ferential equations, among which the
Michaelis-Menten equation mentioned in Sec-
tion 2 is the most fundamental. The Michaelis-
Menten equation describes the biochemical
reaction among molecules used for signaling in
cells. In the following, we will denote the con-
centration of any chemical X as [X], describ-
ing the number of molecules per unit volume. 

A substrate X is the input to the pathway
under the regulation of an enzyme E, and a
product Y is the output of the pathway. The

enzyme plays the role of catalyzer, which trig-
gers the biochemical reaction and transforms
the initial substrate into the resulting product.

k1 k3

S + E→ S • E→ P + E
k2

S • E→ S + E

The expression S•E means that S is bound to E.
The parameters k1, k2, and k3 describe the con-
version rates and

km = (k2 + k3) / k1

which is called the Michaelis constant.
We can obtain a simple differential equa-

tion system for the kinetic dynamics of the
product P, where E0 is the total concentration
of the enzyme.

d/dt [P] = k3 [E0] * [X] / (km + [X]).

The above formulation, however, is only
valid under quasi steady-state conditions, i.e.,
conditions in which the concentration of the
substrate-bound enzyme changes at a much
slower rate than those of the product and sub-
strate. This allows the enzyme to be treated as
a constant, which is E0 in the formula.

A question arising naturally from here is
how to use the above form to explain the
MAPK cascade we already met before. So, we
reformulate it as a set of coupled differential
equations in which each stage in the cascade
corresponds to one equation:

d/dt [MAPKKK] =
k3 (MAPKKK) [MAPKKKK (0)] *
[MAPKKK] / (km (MAPKKK) + 
[MAPKKK]),

d/dt [MAPKK] = k3 (MAPKK) 
[MAPKKK (0)] * [MAPKK] / 
(km (MAPKK) + [MAPKK]),

d/dt [MAPK] = k3 (MAPK) [MAPKK (0)] *
[MAPK] / (km (MAPK) + [MAPK]),
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d/dt [output-of-MAPKcascade] =
k3 (output-of-MAPKcascade) [MAPK (0)] *
[output-of-MAPKcascade] / (km (output-
of-MAPKcascade) + [output-of-MAP-
Kcascade]),

With the appropriate parameters, usually
obtained from empirical observations, the sys-
tem MAPK cascade can be numerically calcu-
lated. Basically, the general behavior can be
described as an amplification of the initial
substrate concentration S(0), resulting in an
enhanced signal with higher concentration of
the resulting product P (final moment). 

One of the well-known functions of the
MAPK cascade in cellular signal transduction
networks is to act as an amplifier for intracel-
lular signaling processes. An unexpected phe-
nomenon — a fixed-point that occurs at a
four-layered MAPK cascade where a feedback
is embedded — is observed by simulation［7］,
which shows that in theory the second mes-
sengers’ signals can be kept at a constant
value during their relay processes within cells.

3.2  Fixed point of pathways with 
feedbacks

Nonlinear dynamical features, such as
bifurcation［3］, have been reported in signal
transduction networks. In order to study the

computational and communication capacity of
signal transduction networks, it is necessary to
make sure how the cellular signals are con-
trolled so that the information flow can be
quantitatively measured. This framework
forms the basis of the architectural design and
performance analysis of engineered ICT sys-
tems inspired by signal transduction networks
in cells. In this section, we take the fixed-point
phenomena as an instance to demonstrate the
nonlinear phenomena of signal transduction
networks, as reported in［8］.
3.2.1  The model for the simulation

As shown in Fig. 5 and Fig. 6, the struc-
ture of a MAPK cascade is layered, with feed-
back being embedded into each layer.

The set of coupled differential equations in
the case feedback is present then becomes:

d/dt [phosphor-protein in MAPKKK layer] =
－ k3 [MAPKKK] [MAPKKKK (0)] *
[MAPKKK] / (km (MAPKKK) + 
[MAPKKK]) － ∫ [MAPKK] dt,

d/dt [phosphor-protein in MAPKK layer] =
－ k3 (MAPKK) [MAPKKK (0)] *
[MAPKK] / (km (MAPKK) + [MAPKK]) －
∫ [MAPK] dt,

Fig.5 Three-layered MAPK cascade with feedback
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d/dt [phosphor-protein in MAPK layer] =
－ k3 (MAPK) [MAPKK (0)] * [MAPK] / 
(km (MAPK) + [MAPK])
－ ∫ [output-of-MAPK-cascade] dt,

d/dt [MAPKKK] = k3 (MAPKKK) 
[MAPKKKK (0)] * [MAPKKK] / 
(km (MAPKKK) + [MAPKKK]),

d/dt [MAPKK] = k3 (MAPKK) 
[MAPKKK (0)] * [MAPKK] / 
(km (MAPKK) + [MAPKK]),

d/dt [MAPK] = k3 (MAPK) [MAPKK (0)] *
[MAPK] / (km (MAPK) + [MAPK]),

d/dt [output-of-MAPKcascade] =
k3 (output-of-MAPKcascade) [MAPKK (0)] *
[output-of-MAPKcascade] / 
(km (output-of-MAPKcascade) + 
[output-of-MAPKcascade]),

where the integral part is calculated from
initial time 0 to the current time t.
3.2.2  Simulation

Owing to the fact that the essential process
of intracellular communication exhibits non-
linear dynamical behaviors in a biochemical
framework in the model above, it is possible
to figure out what kind of parameters of
Michaelis-Menten kinetics behind the fixed-
point phenomena is used by the molecular
mechanism of signal transduction networks
through the MAPK cascade.

The conditions are set as follows:

• The initial concentration of the enzyme =
0.45.

• In the MAPKKKK, MAPKKK, MAPKK,
MAPK layer, the product acts as the
kinase for the succeeding MAPKKK,
MAPKK, MAPK layers and output of the
entire MAPK cascade at its bottom.

• In each layer of MAPK cascade km = 0.1
and k3 = 0.01,

Fig.6 Four-layered MAPK cascade with feedback
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• The initial concentration of substrates
(phosphor-proteins) in all the pathway-
like units is set as 0.45.

• The step/sample number is 10
• The initial concentration of product is set

as 0.001.

Now follows a simulation of a 4-layered
MAPK cascade

Let y = f (x) denote the signaling process
from MAPK denoted as x to protein of the
entire MAPK cascade y, we observed that 

f (0.0001030) = 0.0001030.

where x = y = 0.0001030.

This is a fixed-point-like phenomenon.
The value 0.0001030 determines the crucial
point of the phase transition between the
monotonic decreasing mode and the fixed-
point-like mode.

3.3  Robustness
At the system level of a pathway network,

dynamical features of pathway networks are
the key to understand the cellular signaling
mechanism. One of the most important
dynamical features of pathway networks is
robustness. The robustness of a pathway net-
work can be investigated through different
means, for example, stability analysis is an
efficient one in the case of the Mos-p MAPK
cascade pathway, where Mos-p is a kinase/pro-
tein that is in the phosphorylation state, where-
as Mos is the same protein in the dephospho-
rylation state. 

The cell has high robustness against exter-
nal disturbances. As Kitano［9］points out, can-
cer is an example of robustness in a cell. In
contrast with the robustness of pathway net-
works in the cell, conventional communica-
tion networks are very fragile, for example,
the Achelles’ heel phenomenon in internet
networks occurs when failures occur. This
contrast motivates us to quantitatively
describe the biological robustness［10］of path-
way networks in order to investigate the possi-

bility of applying the knowledge of the biolog-
ical robustness in pathway networks to the
design of information networks in the future.

In the previous sections, we discussed the
graph structure that is usual in computer sci-
ence. It is obvious that the robustness of cellu-
lar signaling processes described in terms of
nonlinear dynamics is tightly connected with
the “dynamical” graph structure of pathway
networks. In general, the parameters of the
differential equations that describe the bio-
chemical reactions of pathway networks can
be defined as labels that correspond to the
graph, where the vertices and edges of the
graph are defined for the pathway network in
the previous section. These topics belong to
the field called Dynamical Networks, which
refers to the integration of nonlinear dynamics
and graph theory. In this section we define
nonlinear dynamical systems in a matrix for-
mulation that corresponds to the graph of the
pathway network.

Based on these schemes, we can formulate
a robustness mechanism of cellular signaling
pathway networks.
3.3.1  Basic concepts

The concept of robustness is defined as
follows.

Definition of Robustness:
Robustness refers to a mechanism that can

guarantee and realize the state transition of a
(usually dynamic) system from vulnerable and
unstable states to sustainable (stable) states
when the system suffers from disturbance that
is outside the environment and that is unex-
pected in most cases［11］.

Let us define a nonlinear system W to
describe the cellular signaling mechanism in
cells:

W (X, S, U,Y, Q)

where  
X — input to the system 
Y — output of the system
S — the states of the system
U — feedback
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Q — parameter vector

The system description is given as fol-
lows:

d/dt (X) = A X + B S + C U
Y = D S

where A, B, C, D are constant matrixes,
described by Q.

All the above-mentioned variables are vec-
tors.

We focus on the definition of robustness in
terms of the system state. Then we define the
robustness by the function G (.) satisfying the
condition that

S = G (S, E)

when the system suffered disturbance E
The robustness feature of a pathway is

expressed in several different aspects of path-
way networks. Stability is among them. The
above-mentioned formulation makes it possi-
ble to use the states of the system for describ-
ing the robustness where the robustness mech-
anism is interpreted as the mechanism for pro-
viding the steady states. The Mos-p MAPK
pathway［12］is an example explaining/analyz-
ing the pathway stability for the robustness of
the corresponding pathway network. In this
pathway, the term “stable steady states” denot-
ed as SS is used to describe the state transition
of the pathway network within a certain
domain［12］. The Mos-p MAPK pathway
includes a MAPK cascade. As Huang et al［13］
reported, the nonlinear dynamical features of
different phosphorylation processes in a
MAPK cascade vary, i.e., the phosphorylation
concentration versus time curve is different
for each layer of a MAPK cascade. The signif-
icance of this phenomenon is obvious if we
reveal the fixed-point of the MAPK cascade
presented in the previous section.
3.3.2  Stability analysis: From an exam-

ple of the Mos-p MAPK pathway
for explanation of stability

The Mos-p MAPK pathway that demon-

strates the transition between the stable/unsta-
ble steady states in cells is reported in［12］. In
order to make the formulation of the corre-
sponding model, we need the Hill coefficient
and the Hill equation.

The Hill equation is given as

δ= ([L] n ) / (Kd + [L] n )
= [L] n / (KA n + [L] n ),

where 

δ is the concentration of the phosphory-
lated protein,
[L] is the ligand concentration, 
Kd is the equilibrium dissociation constant, 
KA is the ligand concentration occupying half
of the binding sites,
and n is the Hill coefficient denoting the coop-
erativity of binding. It describes the nonlinear
degree of the product’s response to the ligand.

The cooperativity indicates the degree of
the biochemical reactions for binding the sub-
strate and enzyme. Here ligand means an
enzyme protein that can bind with another
molecule. In a Mos-p MAPK pathway, Mos-p
is the ligand.

The coefficient n mentioned above is nor-
mally denoted as nHill.

nHill = 1 refers to the case of Michaelis-
Menten kinetics, which corresponds to the
case of completely independent binding,
regardless of how many additional ligands are
already bound.

nHill > 1 shows the case of positive cooper-
ativity, 

nHill < 1 shows the case of negative cooper-
ativity. 

By the above, the SS state can be quantita-
tively described. When the SS is achieved, the
activation degree (concentration) of Mos-p
can be formulated as a fixed-point of the fol-
lowing form:

Mos-p = f (Mos-p),
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where f (.) refers to the Mos-p MAPK cas-
cade pathway.

This shows the steady state of Mos-p,
which is consistent with the phenomena
reported by Ferrell et al.［12］.

Based on the ultrasencitivity quantization,
we have a closer look at the Mos-p MAPK
pathway from two viewpoints:
3.3.2.1  A brief look at the system

We consider the input of the system as the
proteins Mos-P and malE-Mos, and the output as
the protein MAPK. Here two signals concerning
MAPK are involved — activated MAPK and
phosphorylated MAPK (phos • MAPK for
short).

Based on the results from the experiment
reported in［12］, we can use the Michaelis-
Menten equation to obtain that the response of
Mek is monotonic to Mos-P, to malE-Mos, or
to Mos-P and malE-Mos. Additionally, the

response of activate • MAPK or phos • MAPK
is monotonic to the systems’ inputs Mos-P or
to malE-Mos or to Mos-P and male-Mos,
under the condition that there is no feedback
in the pathway networks, which are branched
at the routes from Mos-P and malE-Mos to
Mek.  The phosphorylation effect can be wit-
nessed at Mek, MAPK and Mos-P.

A graph description for this pathway net-
work is given in Fig. 6

Considering the robustness again, we real-
ize that we need the feedback (Cf. Fig. 7) and
related nonlinear cellular signaling mechanism
to help us understand the robustness within
this pathway network.
3.3.2.2  Modeling the temporal

dynamics of the system
Let us use the Hill-coefficient-based for-

mula to describe the temporal behavior of cel-
lular signaling. Assuming the time series of

Fig.7 Cascade without feedback and with feedback
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malE-Mos as

d/dt [moleE-Mos] = f1 ([molE-Mos], 
coefficients)

where f1 () takes the form of a monotic func-
tion with a decreasing order, we obtain

[moleE-Mos] (n+1) － [molE-Mos] (n) =
coefficient [molE-Mos] (t)

This is the time difference equation used for
numerical calculation.

Let m denote the step, m is an integer and the
[mole-Mos] is set as 0. Then we obtain

[active MAPK tot] (m+1) =
([Mos-P] (m) + 1000) H

/ (EC50 H + ([Mos-P] (m) + 1000) H )

where
H refers to the Hill coefficient nH = 5
EC50 = 20 (nM)
[molE-Mos] (t = 0) is set as 1000

Then

[Mos-P] (m+2) = 0.5 * [active MAPK]
(m+1)
= 0.5 * [MAPK (tot)] ([Mos-P] (m) +

1000) H / (EC50 H + ([Mos-P] (m) + 
1000) H )

Now assume that [Mos-P] (m+3) = [Mos-
P] (m+2) + [Mos-P] (m).  Let the moment 
n+1 correspond to m+3, n correspond to m
when we set the time reference of Mos-P
according to the initial time of going through
the pathway and the final time. The moments
of m+1 and m+2 refer to the internal states of
the pathway network as a system. Consequent-
ly we have

[Mos-P] (n+1) = 0.5 * ([Mos-P] (n) + 1000) H

/ (EC50 H + ([Mos-P] (n) + 1000) H ) 
+ [Mos-P] (n)

The Mos-P MAPK pathway derived com-
puting process then becomes

[x (n+1)] － [x (n)] = 0.5 * ([x (n)] + 1000) 5

/ (20 5 + ([x (n)] + 1000) 5 ) － [x (n)]

where 

x is an integer > = 0,
[x (0)] is set as 5.

Let f ((x (t)) = 0.5 * (x (t) + 1000) 5

/ (20 5 + (x (t) + 1000) 5 ) － x (t)

d/dt (x (t)) = x (t+1) － x (t) = f ((x (t))

We define a function in general:

d/dt (x (t)) = f ((x (t))

when [molE-Mos] is treated as a constant.

It is obvious that the above system is still
nonlinear even though the control input
[molE-Mos] is a constant.

Considering the dynamical feature of con-
trol input [molE-Mos], we have that

d/dt (x (t)) = 0.5 * (x (t) + u (t)) 5

/ (20 5 + (x (t) + u (t)) 5 ) － x (t)

where x (t) = Mos-p refers to the state of the
system and u (t) = [molE-Mos] refers to the
control input.

Since this is a coupled system, it is neces-
sary to decouple the different signals in order
to efficiently control the system. 

The description of the pathway network as
a system is normally established by a differen-
tial equation.  Denote the system by the fol-
lowing equations

d [X (t)] / dt = f (t, X (t), U (t))
Y (t) = g (t, X (t))

where t is time, U (t) is the input, X (t) is the
state, and Y (t) is the output. This is a general
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form that includes the case of nonlinear sys-
tems.

Based on the instance of Mos-p MAPK
pathway we discussed before, the cellular
pathway network is modeled as a controller-
centered system where feedback is embedded.
Different constraints can be used to formulate
specific objects in applications, e.g., a matrix-
based representation could be

dX (t) / dt = A (t) X (t) + B (t) U (t)
Y (t) = C (t) X (t)

where A (t), B (t) and C (t) are matrixes.

In this instance, the variable is one dimen-
sional and a nonlinear relation exists between
state transitions. So we have that

d/dt (x (t)) = f (x (t), u (t))

where
x (t) = [Mos-p], this is the state; 
u (t) = [molE-Mos], this is the control

input; this equation is established under the
steady states of the Mos-p MAPK pathway.

The output for detecting the signals of
phosphorylation is given as follow:

y (t) = phos • [MAPK] = g ((x (t), u (t))

where

g ((x (t), u (t)) = 0.5 * (x (t) + u (t)) 3

/ (20 5 + (x (t) + u (t)) 3 )

under the condition that the Mos-p MAPK path-
way is in the steady state.

From the above discussion of pathway
systems, we have presented a dynamics-based
representation for formulating the robustness
of a dynamical system, which is motivated by
the biological robustness in cellular pathway
networks, but which can be modified and
extended to any abstract dynamical system
where feedback is embedded.

4  Error correcting codes for 
cellular signaling pathways

How can we carry out reliable information
processing by pathway networks with dynami-
cal features? An important element underlying
cellular signaling is the robustness of molecu-
lar pathways. Mechanisms such as those
resembling error correcting codes may play an
essential role in this framework.

4.1  Molecular coding for molecular
communication

A reversible molecular switch is the basis
of information representation in cellular infor-
matics as shown in Fig. 7. Two kinds of
reversible molecular switches exist in cells. 

The molecular switch of phosphorylation
and dephosphorylation: The phosphorylation
state of a signaling protein is defined as 1,
whereas the dephosphorylation state of a sig-
naling protein is defined as 0. The phosphory-
lation process is regulated by kinase, the
dephosphorylation process is regulated by
phosphatase.

The switch of GTP-bound and GDP-bound :
As shown in Fig. 8, the GTP-bound state of
GTPase set by the so-called GEF and GEF
pathway is defined as 1 and the GDP-bound
state of GTPase set by the so-called GAP and
GAP pathway is defined as 0. 

The MAPK cascade consists of several
phosphorylation processes. So multiple binary
codes can be generated, e.g. four bits generated
by a four-layered MAPK cascade (see Fig. 9).

The above molecular switches allow us to
formulate a mathematical model for informa-
tion processing based on an abstraction of the
data structure corresponding to the signaling
pathways.

The above framework only involves switch-
es, and it does not include the redundancy typi-
cally associated with error correcting codes. If
we intend to include such codes, then the result-
ing mechanisms should be compatible with the
mechanisms encountered in cell communication.
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4.2  LDPC coding for pathways 
Error correcting codes are mathematical

constructs, and their design involves a differ-
ent philosophy from the way in which biologi-
cal mechanisms have evolved, which includes
an element of randomness. Fortunately, there
is an error correcting code, of which the
design---though mathematically well-found-

ed---involves a random element as well.
Called Low Density Parity Code (LDPC), this
code is, surprisingly, very efficient, in the
sense that it allows transmission of informa-
tion at rates very close to the theoretical maxi-
mum. These codes were developed in 1960 by
Gallager, and they had been long forgotten
due to the perception of them being impracti-

Fig.8 Molecular Switch for binary codes (bits)

Fig.9 Four bits generated from a MAPK cascade
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cal, only to be rediscovered by MacKay in
1996. Ironically, the randomness in LDPC
codes is very attractive in the framework of
biological systems, and this is the reason why
we describe them in more detail.

The LDPC code is defined by a partite
graph BG = <V, E>, where the vertex set
V = V1 ∪ V2. V1 is an ordered set of nodes,
each of which is labeled by a binary number.
The set V1 thus denotes a binary code word.
V2 is a set of which each node is labeled by a
binary number equaling the parity value of the
sum of the labels of the nodes in V1 that are
connected to the node in V2 by an edge in E.

As shown in Fig. 10, at first let V12 be 1
and V21 be 0 (parity summation), then V11

should accordingly be assigned the value 1.
This is the encoding scheme. The decoding is
carried out in a reverse way, as shown in
Fig. 11.

Assume that V11 is lost during information
transmission, then in order to restore the value

of V11 we need to use the information of V12

and V21. Because V12 is 1 and the parity sum-
mation is 0, we can infer that V11 should be 1.

Figure 12 gives the encoding process of 5
bits in V1 (labeled as L1), where the known
bits are put into the condition part of an “IF
THEN” rule and the unknown bits are put into
the conclusion part of this rule.

The nodes in V1 are called L1-units and the
ones in V2 are called L2-units, owing to the
fact that they are described by two separated
vertex sets in a bipartite graph.

Within the signal transduction model fol-
lowed in this paper, the two bipartite parts
associated with the generation of an LDPC
can be designed as shown in Fig. 13, where
the information processing units correspond-
ing to the phosphorylation/dephosphorylation
pathway and GEF/GAP pathway are denoted
as L1-unit and L2-unit, respectively. 

Fig.10 A simple example of an LDPC encoding follows below

Fig.11 A simple example of an error correcting LDPC code 
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As shown in the above figure, the bipartite
graph to encode an LDPC code is mapped
from a pathway whose input is V12 when in
the phosphorylation state and V21 when in the
GTP-bound state and whose output is V11

when in the phosphorylation state. This path-
way corresponds to the graph in Figs. 10 and 11
for encoding and decoding an LDPC code.

The above model allows us to encode phos-
phorylation pathways and the dephosphoryla-
tion pathways in terms of an LDPC code, which
is capable of approaching the Shannon limit.
The derived encoding/decoding model is bidi-
rectional, symmetrical and “implicitly-binary”
(i.e., its binary form can be formulated in terms
of n bits of the L1-units of the model), which
differs from the previous model given in［14］
that is one-directional, asymmetrical (from

phosphorylation/dephosphorylation to GTP-
bound/GDP-bound states) and “explicitly-bina-
ry” (i.e., the phosphorylation/dephosphorylation
mechanism directly encodes the code z).

5  Conclusions

In this paper we have described pathways
in biological organisms that behave de-facto
like communication systems on cellular
scales. The robustness of biological communi-
cation systems offers an important lesson for
the design of man-made communication sys-
tems: key concepts in this context are paral-
lelism, adaptability, and structural stability.
We have also sketched LDPC codes, which
have much in common---due to their random-
ness---with the unstructured character of bio-

Fig.12 The rules for generating words 

Fig.13 An example of a pathway that is mapped to the model in Fig. 11
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logical systems. This may suggest that LDPC
codes form an important avenue of research in
the realization of communication systems that
include the above key concepts.  Cellular sig-
nal transduction networks form a rich source
of inspiration in the design of next-generation

communication systems, which will have
greater robustness, greater capacity, and
greater adaptability, but which will also be
less visible to its users, forming a transparent
ever-present environment, such as the overlay-
network in［15］.
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