
113ANDO Ruo

1 �Introduction

As networks are increasingly widespread
and cloud computing and Pear to Pear (P2P)
network technologies are more broadly uti-
lized, we have been using virtual networks
composed of virtual machines more fre-
quently. Our medium-term plan in the second
term has focused on improving the accuracy
of intrusion detection and enhancing monitor-
ing networks as part of research and develop-
ment of traceable network technology. In our
medium-term plan of the previous term, we
mainly researched the monitoring of virtual
machines and P2P networks to make our trace-
able network monitoring technologies more
accurate and to expand our monitoring ranges.

One of the reasons triggering the cur-
rent rapid penetration of cloud computing is
the advancement of virtualization technol-
ogy. Irrespective of service types (e.g. SaaS,
PaaS, and IaaS), we can define cloud comput-
ing as a service enabling the utilization of vir-
tual machines. Based on this understanding,
we have been engaged in research on probing
technology since making new types of sys-
tems including cloud computing more secure

requires the monitoring of virtual machines.
Furthermore, information leakage on over-

lay networks including P2P networks began to
be noticed as one of the most important social
issues around 2006, during the medium-term
plan period of the previous term. This prompted
us to develop traceability technologies of this
event as a way to research traceable networks.
We also enhanced the capability of analysis
processing since the data obtained from P2P
networks for tracking became very large.

Generally speaking, systematic monitor-
ing and intrusion detection technologies based
on virtualization technology is called virtual
machine introspection. An Intrusion Detection
System (IDS) deployed on virtual machines
keeps monitoring objects and probes separated
by virtualization technology, which enables
new features not available through conven-
tional IDSes. It has been pointed out that con-
ventional Network Intrusion Detection System
(NIDS) is harder to be detected by attackers
but their data is less accurate and that Host-
based Intrusion Detection System (HIDS) is
more visible for attackers but their data is more
accurate. A system design is being proposed so
that we can leverage the characteristics of Vir-

3-4 �Towards�Traceable�Overlay�Network�over�
Virtualized�Systems

ANDO Ruo

We have been researched the traceability of overlay network including P2P network and vir-
tualized systems. For this purpose, we have developed monitoring system for P2P network and
virtual machines running on hypervisor. As one of the design goals, we have aimed to enhance
the system about fine-grained and large-scale monitoring for tracing information leaks and mal-
ware behavior. In this research, we have cooperated with software developer and SIer concern-
ing information security and evaluated our systems on testbed of NICT.

Keywords
Virtual network monitoring, Virtualization technologies, Overlay network, Information leaks,
Testbed

114 Journal of the National Institute of Information and Communications Technology Vol. 58 Nos. 3/4 2011

tual Machine Monitor (VMM) and make the
maximum use of these contradicting features.
Advantages available through the use of VMM
when we create an IDS can be summarized
as Isolation (i.e. probes are placed separated
from the guest OS), Inspection (i.e. detailed
data including events made available in the
kernel space), and Interposition (i.e. enabling
system calls, interruptions, and I/O requests to
VMM to be hooked and intermediate actions
to be inserted at the same time). Thus, we have
created a system to enable intrusion detec-
tion based on these features through our R&D
efforts.

In P2P, one computer serves both as server
and client, and information can be easily
exchanged among users and it is also resistant
to changes such as the rapid increase of net-
work traffic, and thus P2P is rapidly becoming
widely used. On the other hand, infringement
of copyright through P2P networks and infor-
mation leaks due to virus infection via P2P are
becoming issues. While P2P software is often
released for free, there are more cases where
the provision of upgrading and modifications
is stopped during the stages of formation and
development of development communities,
compared with commercial software. Devel-
opment is sometimes stopped due to various
circumstances. This means that even when
new vulnerabilities or attacks on overlay net-
works that are comprised of P2P applications
become evident, corresponding modifications
and patches are not always prepared. It is
therefore necessary in P2P network monitoring
to analyze software that comprise the virtual
network, extract protocols and data structures
and conduct monitoring. During the first half
of the medium-term plan period, we conducted
research and development of a system to moni-
tor a wide-area virtual network through the
analysis of P2P software.

2 �Development�of�virtualization�
system�monitoring�technology

The rapid improvement in processor per-
formance in recent years has enhanced the

practicability of virtualization technology that
can operate multiple OS simultaneously. Sys-
tems such as virtual machine monitors have
facilitated external monitoring of OS and pro-
cesses, compared with traditional debugger and
dump tools. It has been also pointed out that
the complete virtualization mode is the great-
est innovation in the processor structure since
the protect mode. The capability of external
monitoring offered by this virtualization tech-
nology is attracting attention with regard to
debugging and software checking, and particu-
larly regarding VMM, from the perspective of
implementing security functions. In particular,
because it is impossible to predict the timing
of occurrence of security incidents or estimate
processing time, it is important for the target to
be monitored for prevention to send a request
for processing to the prevention system asyn-
chronously. By using virtualization technol-
ogy, such processing becomes possible[1]. In
addition, when there are multiple OS that are
the targets to be monitored for prevention, it
becomes possible to configure security policies
and control access in an integrated manner by
virtualizing and consolidating such OS in one
physical machine[2].

Debugging technology, which has expe-
rienced significant development during the
past few years, coupled with the develop-
ment of virtualization technology, has enabled
more detailed monitoring and highly granular
logging. In particular, there has been rapid
improvement in the Debugging API provided
by Microsoft Windows and network applica-
tions as well as the environment for the devel-
opment of kernel modules. The dissemination
of API provided by VMWare and others and
open-source virtual machine monitors has
enabled the linkage between host OS drivers
and memory management units and interrupt
handlers on virtual machine monitors, and the
communication of information of the guest OS
to the host OS. This has led to research on the
enhancement of debugging and malware anal-
ysis functions utilizing virtualization technol-
ogy[3].

In recent years, Windows OS applications

115ANDO Ruo

that are connected to networks are demon-
strating an increasing tendency both in terms
of quality and quantity. As a result, coupled
with the dissemination of virtualization tech-
nology, dependency among network applica-
tions is becoming more complex, and there is
an increased information processing load when
assessing abnormalities in the client opera-
tion status on networks through qualitative log
analysis. This paper proposes the method of
monitoring virtual network applications utiliz-
ing virtualization technology.

2.1 �Types�of�virtual�machine�monitors�
and�modification�methods

Virtual machine monitors are categorized
into two types: one is the type that constructs
hypervisors by itself such as XEN[4]; and the
other is the type that constructs them inside
the host OS (Linux) such as the kernel virtual
machine (KVM).

The first type of virtual machine monitor
such as KVM uses the host OS as the hyper-
visor. In this method, the virtual memory of
the guest OS that is placed within the kernel
space of the host OS is transferred into the
user space or the kernel space. This method
uses the QEMU interface. Since KVM is taken
into the Linux kernel, the latest functions can
be used in the management OS, but it is not
stable yet because a dedicated API has not
been prepared. Therefore, the proposed sys-
tem was implemented for the transfer of values
using debug handlers and transfer of character
strings using shared memories.

In the second type of virtual machine
monitor such as XEN, its own bootloaders
and hypervisors are prepared. In this case, it
is either quasi-virtualization or complete vir-
tualization. As this paper deals with the com-
plete virtualization of Windows, when acquir-
ing snapshots, the QEMU interface is used,
and not the XEN interface. As is the case with
KVM, there is a method of transferring API
factors, ASCII codes and others via the vCPU
register. XEN is characteristic in that an API is
in place, and it is possible to take advantage of
the API to analyze the Windows status using

memory snapshots, or transfer log information.
It is also possible to capture hardware inter-
rupts ahead of the Windows OS.

In both the first and second types of virtual
machines, the method of capturing the access
and status transitions to hardware or virtual-
ized hardware, and monitoring the behavior of
the virtualized machine can be applied. This
method is called virtual machine introspec-
tion, the details of which are proposed in [5].

2.2 �Modification�method�of�virtual�
Windows�OS

The system integration system monitors
proposed in this paper enables monitoring that
is more granular than monitoring tools pro-
vided by Microsoft, with API hooks by DLL
Injection, filter drivers and rewriting of system
tools, among others. Figure 1 shows the out-
line of an integration system monitor, which
explains how the mechanism for debugging
and filtering provided by Windows OS is uti-
lized to intercept access by various resources
(memory, sockets, files, registries) to be
recorded in the log. Hooks such as the execu-
tion of branch instructions and hardware inter-
rupts are dealt with through modification by
the virtual machine.
2.2.1 �Kernel�API�Hook�by�filter�drivers

The filter driver of Microsoft Windows is
a software module whose active introduction
and utilization began with Windows XP. The
filter driver, which is located between the I/O

KERNEL32.DLL

NTdll.DLL

SystemCallDescriptorTable

API CALL

Modification 1

Modification 2

Fig.1 Monitoring API call sequence by modify-
ing system call table in kernel space

116 Journal of the National Institute of Information and Communications Technology Vol. 58 Nos. 3/4 2011

manager and kernel driver, is a software that
is invoked utilizing the existing function pro-
vided by Windows in the vicinity of the func-
tion driver (existing device driver), which adds,
modifies and debugs new functions. By using
the filter driver, a Native API Hook can be
implemented. The Native API Hook is used to
detect events in kernel mode. In user mode, the
issuance of API calls is communicated into the
kernel space via Ntdll.DLL. In Windows, the
API operated in kernel mode is called Native
API, which is controlled by a structure called
SystemServiceDescriptorTable. Therefore, it is
necessary to modify SystemServiceDescriptor
to implement the Native API Hook.

Modification 1 is a method used to rewrite
the system call table using InterlockExchange.
Modification 2 is a method used to rewrite the
system call table when loading the driver to
pass through the hook function. The modifica-
tion of the system call table makes it possible
to capture the memory access of Windows OS
and visualize memory behaviors, among oth-
ers[6].
2.2.2 �API�Hook�by�filter�manager

Although this is also influenced by the
development environment and the operating
situation, the file I/O hooks using normal fil-
ter driver sometimes do not operate in a sta-
ble manner. Filter driver is a file system filter
driver which is newly provided by Microsoft.

Filter driver is designed with a focus on appro-
priately controlling the order and other aspects
regarding large numbers of invoked interrupts
and API, and streamlining and supporting
development by third parties. Figure 2 shows
the outline of the function of filter manager.
Filter manager serves as an intermediary
between the kernel driver (function driver) and
filter driver, simplifies the implementation of
filter driver, and stabilizes the functions. Filter
driver is implemented via filter manager pro-
vided by Microsoft, and enables lightweight
intermediate processing[7].
2.2.3 �API�Hook�by�DLL�Injection

DLL Injection is executed when a given
function is stored in a library and a specific
API call is issued, and is used at the time of
debugging of software when a new function is
to be added to an existing application. Given
the request from the development side, a tech-
nology called DLL Injection is also some-
times used, in which a DLL (unique API) is
executed by another process at a given timing.
The methods of DLL Injection include types
in which the functions provided by Microsoft
Windows are used, the functions of debugging
mechanisms are used, remote threads are used,
and the import section of modules is modified.
This paper explains the method in which the
import section of modules is modified, which
made it possible to track software behavior and

Fig.2 Logging file access of Windows OS using filter driver

117ANDO Ruo

prevent problematic traffic before its occur-
rence or arrival, by hooking the data trans-
mitting and receiving functions of the target
software and inserting appropriate operation
there. As shown in Fig. 1, we injected DLL by
modifying the import table. The import table
(import section) is a data structure (header)
located inside the section table, where the list
of DLL addresses necessary before the execu-
tion of the program and addresses of sym-
bols inside the DLL to be used is stored. By
rewriting the DLL addresses to be hooked into
given DLL addresses, software operation can
be modified. This method does not depend on
the specification of a specific CPU and there
is no issue of synchronization of threads, and
is therefore often utilized as a very flexible
method. The process consists of the following:
i) preparing the DLL to be injected, ii) acquir-
ing import table address of the target soft-
ware, iii) looking for function addresses to be
hooked, and iv) rewriting discovered addresses
into the addresses for the DLL (function) to be
injected. The function form is as follows:

void ReplaceIATTableInP2Psoftware

("kernel32.dll",

funcORG,

funcINSERT",

moduleHandler);

There are several implementation methods
that vary depending on the structure of target
process, but the outline is as shown above.

2.3 �Output�in�the�proposed�system
This section explains visualization as

result of clustering the output log of the above-
mentioned virtual machine monitoring system
using a self-organizing map. The details of
capturing registry access of Windows OS and
the tabulation process are proposed in [8].
2.3.1 �Acquired�data�and�algorithm

This section shows the results of visual-
izing behavior data of the monitored virtual
machine. A registry access log that was made
observable was used to visualize the virtual
machine. An example of output of the log is

shown below.

128799977931406250 ctfmon.exe(324) EnumKey 0x00000000

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CTF\TIP

{78CB5B0E-26ED-4FCC-854C-77E8F3D1AA80}

The top line consists of eight values.

1 System time
2 Process information of invoker
3 Name of invoked registry function
4 Return value of function
5 Registry key
6 Registry value
7 Setting value
8 Acquired value

When quantifying registry access logs, we
generated a matrix by counting the frequency
of occurrence of words in the function name of
registry key and registry.

In addition, this study uses a self-orga-
nizing map to visualize registry access data.
Self-organizing map is one of the unsuper-
vised learning algorithms, and is characteristic
in that cluster numbers are not given, unlike
k-means method or other methods. The merit
of a self-organizing map lies in that it can
learn without changing the topology among
data. When the competition layer is set in two
dimensions, it is possible to visualize while
maintaining the phase relation among data
input in multiple dimensions.

The behavior expression is as shown below.
In the same way as other neural network algo-
rithms, the weight among neurons is modified
using the difference between input vector and
weight vector.

Wv(t + 1) = Wv(t) + F(t)a(t)(D(t) − Wv(t))

Here “W” indicates the weighting coeffi-
cient matrix among nodes, “D” the input vec-
tor, and a(t) the learning coefficient. In a self-
organizing map, the best matching unit (BMU)
is determined against each node. The F(t) in
the above expression is neighborhood radius
and changes according to the distance from the

118 Journal of the National Institute of Information and Communications Technology Vol. 58 Nos. 3/4 2011

BMU. For the threshold value that terminates
the learning process, the number of times of
learning is used. The details of the visualiza-
tion of a self-organizing map are explained
below.
2.3.2 �Visualization�of�virtual�machine�

behaviors
This paper has evaluated our proposed

method by using a self-organizing map to visu-
alize virtual machines whose status is similar
to that of virtual machines experiencing secu-
rity incidents.

Our evaluation experiment categorizes
virus and infection behaviors into installa-
tions and transmissions (i.e. sending packets).
We have prepared data that are similar in their
behaviors (i.e. data observed in case applica-
tions and device drivers are installed and P2P
applications and a Web browser are executed)
to categorize and identify behaviors to be mon-
itored. The following are the behavior patterns
analyzed by our method.

<Pattern I>

input 1: installation of text editor

input 2: installation of device driver

input 3: installation and execution of malware

<Pattern II>

input 1: running P2P application

input 2: running Internet Explorer

input 3: installation and execution of malware

<Pattern III>

input 1: running P2P application

input 2: installation of device driver

input 3: installation and execution of malware

Figures 3–5 show the visualization results
based on different scenarios. Figure 3 (Pat-
tern I) visualizes and identifies malware infec-
tions and non-malicious software installations.
Malware installations are located in the center
of Fig. 3 and software installations, includ-
ing installations of applications and device
drivers, are located on the right-hand side of
the Fig. 3. Figure 4 (Pattern II) visualizes and
identifies malware infections and the execution
of two network applications (i.e. a P2P appli-
cation and a Web browser). These three cases
are separated and placed in three locations on
Fig. 4. Malware infections and communica-
tion application executions have been visual-
ized and identified. The communication appli-
cations include P2P applications and a Web
browser, whose activities are located in the
center and on the left hand side of Fig. 4. Mal-
ware infections are located on the right hand

Fig.3 Clustering and visualization of 3 states of Windows OS (installing application, installing device driver and mal-
ware infection). States caused by malware are distributed on the left side (3) of the figure.

119ANDO Ruo

side of Fig. 4. Figure 5 (Pattern III) categorizes
and visualizes (1) the execution of P2P appli-
cations, (2) the installations of device driver
software, and (3) malware infections. 1 and 2
are located on the right hand side of center and
malware infections are located on the left hand

side of Fig. 5.

3 �Developing�the�monitoring�tech-
nology�for�overlay�networks

P2P networks, where one machine func-

Fig.4 Clustering and visualization of 3 states of Windows OS (P2P application, Web browser (IE) and malware infec-
tion). States caused by malware are distributed on the right side (3) of the figure which is properly isolated
from other two states.

Fig.5 Clustering and visualization of 3 states of Windows OS (P2P application, installing device driver and malware
infection). States caused by malware are distributed on the left side (3) of the figure which is properly isolated
from other two states.

120 Journal of the National Institute of Information and Communications Technology Vol. 58 Nos. 3/4 2011

tions both as a server and a client, lead to infor-
mation leaks and pose many issues to our soci-
ety. File distribution through P2P networks has
been studied in recent years, but we still do not
have enough information on in-depth research
and lack disclosed information on large-scale
file distribution covering foreign countries.
As a more widespread usage of P2P software
leads to more issues in our society, we need
to leverage the visualization of network status
to correctly understand its impact. P2P soft-
ware is often released and used for free, but its
information is not disclosed or readily avail-
able. This makes it impossible for us to under-
stand how file distribution is done across net-
works, complicating our response to security
incidents. Large-scale P2P networks contain a
large volume of data to be monitored, requir-
ing us to design our system to virtualize nodes
to be monitored for the enhanced consolidation
of our monitoring process and to prevent the
resource consumption by the analysis system
from hampering or confusing the operations of
the monitoring system. This paper illustrates
how we have enhanced the capabilities to pro-
cess a large volume of data based on a large-
scale P2P network monitoring system using
virtualization technology. We have deployed a
protocol using virtual registers as we transfer
monitored data to a virtual machine monitor
and the host operating system (i.e. VM intro-
spection). This has reduced the frequency of
file I/O and memory access within the virtual
monitoring system[1]. This mechanism enables
the virtual monitoring system to satisfy mea-
surement problem restrictions, allowing us to
make the maximum use of resources for net-
work monitoring.

3.1 �Structure�and�characteristics�of�
P2P�software

P2P networks, where one computer func-
tions as a server and a client, enable simple
communication between users and are highly
resistant to changes including a rapid increase
in network traffic. These features have rapidly
accelerated the utilization of P2P. On the other
hand, copyright infringement through P2P net-

works and information leaks triggered by virus
infections on P2P networks are causing many
issues. P2P software is frequently released
for free, while it often ceases to be upgraded
or modified, unlike commercial software, as
developer communities are established and
developed. Its development may be halted due
to various issues. This can make fixes and
patches unavailable as we detect new vulner-
abilities and attacks against overlay networks
created by P2P applications.

In general, P2P software is categorized
into three types. What is unique about P2P is
that its nodes directly exchange data and files
with each other. The first generation P2P (also
known as pure P2P) enables a server to con-
trol which nodes on networks contain which
files. The second generation P2P allows nodes
to communicate data with each other without
servers. The third generation P2P software is
equipped with a caching feature to enhance
anonymity.

P2P software is typically composed of four
modules: node management, query manage-
ment, key management, and task management.
The critical information required to track P2P
software behaviors is key tables, node tables,
transmitted file tables. We used these data
deployed on virtual memory to hook and cap-
ture as well as analyze decoding and filtering
API calls used to send packets. The hooking
methodology is described in Chapter 2.

P2P applications are designed to be used
by multiple users, making it difficult for us
to easily rewrite their programs. In addition,
upgrades and patches are not guaranteed for
them and development can be halted due to
various reasons. As we use software with these
characteristics in a safe manner, it is valid for
us to modify it using the debugging technol-
ogy explained in this paper. The second impor-
tant characteristic of P2P applications is that
we cannot capture network topologies created
by them. This is because specific probe sys-
tems placed on P2P networks can be targeted
for attacks and broadcasting is not used for the
same reason. This makes it difficult to moni-
tor based on servers and requires us to obtain

121ANDO Ruo

the information on process memory on each
probe so that we can capture topologies and
traffic flows. To meet this objective, a system is
proposed to modify P2P applications by using
various technologies, including DLL Injection
explained in Chapter 2, and analyze their traf-
fic[9].

3.2 �Monitoring�and�processing�P2P�
network�traffic

P2P network traffic is more likely to fluctu-
ate and harder to predict than routine and Web
applications. We also have to deal with rapid
increases in volume within a short period of
time and add storage and processors. To coun-
ter this situation, the analysis system should be
placed outside of virtual nodes (i.e. on the host
OS). If the analysis system is placed inside
nodes, we have not yet come up with features
to dynamically add storage and processors.
This paper proposes a system transmitting logs
from virtual probes to the host OS through vir-
tual registers and enabling the host OS directly
controlling physical machines to enhance the
analysis process.

Large-scale P2P networks contain a large

volume of data to be monitored, requiring us
to virtualize nodes to be monitored for the
enhanced consolidation of the monitoring
process. However, the consolidation does not
intend to reduce the traffic triggered by each
probe and increasing volumes of monitoring
data enhance loads on the analysis process.
Thus, placing monitoring and analysis features
on the same probe can lead to the analysis pro-
cess load impacting the monitoring feature.

Based on the P2P traffic monitoring con-
ditions explained in Section 3.1, this paper
proposes a method separating the monitoring
system from the analysis system by virtualiza-
tion technology. This will enable us to flexibly
change storage and processor capacities of the
host OS in line with an increase or change in
output logs from the monitoring system. A
detailed methodology on using VM monitor-
ing technology (i.e. VM Introspection) to pro-
cess large-scale and large-volume traffic data
for P2P networks is proposed by [10].

3.3 �Creating�probes�with�virtual�
machines

Figure 6 illustrates a system transmitting

SOCKET

SQL Function Filtering

Visualization

SOCKET

SQL Function

Filtering

Visualization

Log File

SQL Function

Filtering

SQL DB

SQL DB

SOCKET

SQL Function Filtering

Visualization

SOCKET

SQL Function

Filtering

Visualization

Log File

SQL Function

Filtering

SQL DB

SQL DB

Crawler Crawler

Crawler Crawler

Fig.6 System architecture for logging and storing large scale data of P2P monitoring

122 Journal of the National Institute of Information and Communications Technology Vol. 58 Nos. 3/4 2011

the probes output by the guest OS through
virtual registers to the host OS. It converts
obtained monitoring information into numeri-
cal data at the time of P2P communication
events (e.g. socket access and file access),
places it in the context of virtual CPUs, and
moves the control to virtual machine monitors.
It obtains the context of virtual CPUs within
the handlers of virtual machine monitors or
the host OS and recreates it as output logs.
Using virtual registers enables us to minimize
the memory or file access by the monitoring
system of the virtual OS and transmit monitor-
ing data to the host OS (i.e. physical machines)
we can configure in the system[11].

Large-scale P2P networks provide a large
volume of data to be monitored, requiring
monitoring nodes to be virtualized for the
enhanced consolidation of the monitoring pro-
cess. The proposed system enables provision-
ing for the monitoring process whose traffic
logs dynamically fluctuate and are hard to pre-
dict.

3.4 �Visualization�of�P2P�network�traffic
This section explains how we have moni-

tored large-scale traffic and represented the
results of stored data as explained in Section
3.3. It also describes how we have categorized
the detected nodes and focuses on the detec-
tion and visualization of super nodes.
3.4.1 �Leveraging�Keyhole�Markup�

Language�(KML)
KML is an XML-based markup language

developed to visualize 3D geographical infor-
mation. KML enables us to visualize points,
lines, images, polygons, and other signs on a
map and to share geographical information
with other users using Google Earth. Currently
KML 2.2 is adopted as a standard by Open
Geospatial Consortium, Inc. (OGC). Our visu-
alization system converts monitored data into a
KML-based file format to enable data visual-
ization based on Google Earth[12].

Figure 7 visualizes P2P (i.e. Winny) net-
works monitored in a specific period based
on passive monitoring. We have color-coded
detected nodes based on their size, convert-
ing their IP addresses into spatial information
(i.e. longitude and latitude) and visualizing
the converted information by storing it into a
KML file. We can also create animated images

Fig.7 Plots are colored according to the scale of node

123ANDO Ruo

Fig.8 Visualization of P2P networks around Koganei City (sample)

by successively showing images from multiple
P2P networks using the TimeSpan tag.

Figure 8 shows the visualized image of
P2P network nodes around Koganei City. The
detected number of P2P network nodes reaches
from hundreds of thousands of nodes to mil-
lions of nodes, making it impossible for us to
visually check the node distribution of each
area by creating a nation-wide visualized
image. Thus, our visualization system enables
us to confirm the node distribution of each
area through its scaling feature.
3.4.2 �Detecting�a�super�node�and�

visualizing�nodes
In general, P2P networks include nodes

where file distribution information is consoli-
dated. Detecting and preventing the propaga-
tion of leaked files on P2P networks requires
us to detect these nodes with consolidated
information. Figure 9 shows the layered struc-
ture of super nodes and other nodes located on
Winny networks. As leaked files are stored on

super nodes, propagation speed will rapidly
accelerate. Thus, our P2P monitoring system
has an algorithm to detect super nodes out of
the data containing detected nodes.

Generally speaking, pure P2P networks
create large-scale super nodes, where informa-
tion, files, and queries are converged. Many
super nodes are linked to other multiple nodes.
Thus, super nodes not only consolidate infor-
mation on networks but can rapidly propagate
their stored files. To counter this, our infor-
mation leak monitoring and tracking system
detects super nodes distributed on networks
and rapidly captures network distribution sta-
tus as well as prevents future information leaks
more effectively.

Figure 10 visualizes a super node located
in Tokyo. It shows many nodes color-coded
based on their size (i.e. red, green, and orange)
linked from the hub. This super node consoli-
dates distribution information. It is critical for
us to detect and monitor a super node so that

124 Journal of the National Institute of Information and Communications Technology Vol. 58 Nos. 3/4 2011

P2P Trace network

File leak !
Super node 2Super node 1

Fig.9 File leakage over super node

Fig.10 Visualization of super node in Tokyo

we can monitor information leaks in a timely
manner.

4 �Conclusion

As networks are increasingly widespread
and cloud computing and P2P network tech-

nologies are more broadly utilized, we have
been using virtual networks composed of vir-
tual machines more frequently. Our medium-
term plan in the second term has focused on
improving the accuracy of intrusion detection
and enhancing monitoring networks as part of
research and development of traceable network

125ANDO Ruo

technology. In our medium-term plan of the
previous term, we mainly researched the moni-
toring of virtual machines and P2P networks
to make our traceable network monitoring
technologies more accurate and to expand our
monitoring ranges.

One of the reasons triggering the cur-
rent rapid penetration of cloud computing is
the advancement of virtualization technol-
ogy. Irrespective of service types (e.g. SaaS,
PaaS, and IaaS), we can define cloud comput-
ing as a service enabling the utilization of vir-
tual machines. Based on this understanding,
we have been engaged in research on probing
technology since making new types of sys-
tems including cloud computing more secure
requires the monitoring of virtual machines.

Furthermore, information leakage on over-
lay networks including P2P networks began
to be noticed as one of the most important
social issues around 2006, during the medium-
term plan period of the previous term. This
prompted us to develop traceability technolo-
gies of this event as a way to research traceable
networks. We also enhanced the capability of
analysis processing since the data obtained
from P2P networks for tracking became very
large.

Generally speaking, systematic monitor-
ing and intrusion detection technologies based
on virtualization technology is called virtual
machine introspection. An IDS deployed on

virtual machines keeps monitoring objects
and probes separated by virtualization tech-
nology, which enables new features not avail-
able through conventional IDSes. It has been
pointed out that conventional NIDSes are
harder to be detected by attackers but their data
is less accurate and that HIDSes are more visi-
ble for attackers but their data is more accurate.
A system design is being proposed so that we
can leverage the characteristics of VMM and
make the maximum use of these contradict-
ing features. Advantages available through the
use of VMM when we create an IDS can be
summarized as Isolation (i.e. probes are placed
separated from the guest OS), Inspection (i.e.
detailed data including events made available
in the kernel space), and Interposition (i.e.
enabling system calls, interruptions, and I/O
requests to VMM to be hooked and interme-
diate actions to be inserted at the same time).
Thus, we have created a system to enable intru-
sion detection based on these features through
our R&D efforts.

The protocol analysis and virtualization
technologies applied to these monitoring sys-
tems will be further utilized for the safety
analysis of cloud computing environments, the
monitoring of outside environments, and the
recurrence verification on our Testbeds, all of
which are going to be conducted by the Security
Architecture Laboratory based on the medium-
term plan of the current project period.

References
	 1	 Ruo	Ando,	Youki	Kadobayashi,	and	Youichi	Shinoda,	“Asynchronous	Pseudo	Physical	Memory	Snapshot	

and	Forensics	on	Paravirtualized	VMM	Using	Split	Kernel	Module,”	ICISC	2007,	The	10th	International	

Conference	on	Information	Security	and	Cryptology,	November	29–30,	Seoul,	Korea.

	 2	 Anh-Quynh	Nguyen,	Ruo	Ando,	and	Yoshiyasu	Takefuji,	“Centralized	Security	Policy	Support	for	Virtual	

Machine,”	LISA	2006:	79–87.

	 3	 Ruo	 Ando,	 Youki	 Kadobayashi,	 and	 Yoichi	 Shinoda,	 “Incident-driven	 checkpointer	 on	 full-virtualized	

VMM	using	Kernel	Virtual	Machine,”	IPSJ	Computer	Security	Symposium	2007,	Oct.	2007.

	 4	 Paul	Barham,	Boris	Dragovic,	Keir	Fraser,	Steven	Hand,	Timothy	L.	Harris,	Alex	Ho,	Rolf	Neugebauer,	

Ian	Pratt,	and	Andrew	Warfield,	“Xen	and	the	art	of	virtualization,”	SOSP	2003,	pp.	164–177.

	 5	 Tal	Garfinkel	and	Mendel	Rosenblu,	 “A	Virtual	Machine	 Introspection	Based	Architecture	 for	 Intrusion	

Detection,”	 In	 the	 Internet	 Society’s	 2003	 Symposium	 on	 Network	 and	 Distributed	 System	 Security,	

NDSS	2003,	pp.	191–206.

126 Journal of the National Institute of Information and Communications Technology Vol. 58 Nos. 3/4 2011

	 6	 Ruo	 Ando,	 Nguyen	 Anh	 Quynh,	 and	 Kuniyasu	 Suzaki,	 “A	 visualization	 of	 memory	 state	 transition	 of	

Windows	OS	exploiting	virtual	machine	introspection,”	IPSJ	SIG	technical	reports	2009-OS-112.

	 7	 Ruo	 Ando,	 Nobuko	 Inoue,	 and	 Kuniyasu	 Suzaki,	 “An	 implementation	 of	 secure	 access	 control	 on	

Windows	OS	using	filter	driver,”	IPSJ	Computer	Security	Symposium	2009,	Oct.	2009.

	 8	 Ruo	 Ando,	 Kazushi	 Takahashi,	 and	 Kuniyasu	 Suzaki,	 “A	 SOM	 based	 malware	 visualization	 system	

using	 resource	 access	 filter	 of	 virtual	 machine,”	 The	 2011	 International	 Conference	 on	 Computers,	

Communications,	Control	and	Automation	(CCCA	2011),	Hong	Kong,	China,	February	20–21,	2011.

	 9	 Ruo	Ando,	Youki	Kadobayashi,	and	Yoichi	Shinoda,	“A	large	scale	P2P	network	monitoring	using	virtual	

register	based	introspection,”	IPSJ	Computer	Security	Symposium	2010,	Oct.	2010.

	 10	 Ruo	Ando,	Hideo	Toyama,	and	Youki	Kadobayashi,	“Tracing	behavior	of	P2P	software	using	DLL	injec-

tion,”	IPSJ	SIG	technical	reports	2007-CSEC-36.

	 11	 Ruo	Ando,	Youki	Kadobayashi,	and	Yoichi	Shinoda,	 “Blink:	Large-scale	P2P	Network	Monitoring	and	

Visualization	System	Using	VM	introspection,”	NCM	2010:	6th	 International	Conference	on	Networked	

Computing	and	Advanced	Information	Management,	August	16–18,	Seoul,	Korea,	2010.

	 12	 Ruo	Ando,	Hideo	Toyama,	Youki	Kadobayashi,	and	Yoichi	Shinoda,	“P2P	Network	geographical	visual-

ization	using	passive	monitor	and	Google	Earth,”	IPSJ	SIG	technical	reports	54,	1,	2010-05-20.

(Accepted June 15, 2011)

ANDO Ruo, Ph.D.

Senior Researcher, Security
Architecture Laboratory, Network
Security Research Institute

Network Security, Software Security

