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4-6 �Solving a Discrete Logarithm Problem via 
Function Field Sieve (FFS)

SHINOHARA Naoyuki, WANG Lihua, and MATSUO Shin’ichiro

Pairings is used to construct many cryptographic systems for which no other efficient imple-
mentation is known, such as identity based encryption. Especially, the ηT -paring on supersingu-
lar curves over a finite field GF(3n

) is efficiently implementable. The security of cryptosystems 
using such ηT -parings is based on the difficulty to solve Discrete Logarithm Problem (DLP) in 
GF(3

n
). Therefore, in the collaborative research of National Institute of Information and 

Communications Technology (NICT) and Future University-Hakodate, we successfully set a new 
record for solving the DLP in GF(36·71

) of 676-bit size. In this paper, we remark about the collab-
orative research.
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1 �Preface

In the current information systems, an 
increasing amount of confidential information 
is used, e.g. for online shopping or Internet 
banking. In addition, various cryptographic 
technologies are used for the current informa-
tion systems in terms of information security. 
Therefore, the assessment of cryptographic 
technology to constantly ensure security 
against progress of deciphering ability of mali-
cious attackers is required. The important role 
in this assessment is to ensure that the calcula-
tion of the mathematical problem which cryp-
tographic technology is based on is difficult 
using the capabilities of current computers, or 
even those of future potential computers.

Recently, pairing based cryptosystems, 
used to construct many cryptosystems for 
which no other efficient implementation for 
the traditional public key encryption is known, 
such as identity based encryption, are actively 
researched. As pairing based cryptosystems 
are based on the difficulty to solve the Discrete 
Logarithm Problem (DLP) in a finite field, 

verification and assessment of computable bit 
count are required to accurately assess secu-
rity.

Especially, the  Tη -pairing on supersingu-
lar curves over a finite field )3( nGF  is known 
to be efficiently implementable. Although the 
security of cryptosystems using such  Tη -pair-
ings is based on the difficulty to solve the 
Discrete Logarithm Problem (DLP) in )3( nGF , 
few computational experiments related to the 
Discrete Logarithm Problem (DLP) in )3( nGF  
have been reported.

In April 2009, National Institute of Infor-
mation and Communications Technology 
(NICT) and Future University-Hakodate 
started the collaborative research on the secu-
rity of cryptosystems using such  Tη -pairings, 
i.e. effective solution of the Discrete Loga-
rithm Problem (DLP) in )3( nGF . As a result, 
they succeeded in calculating a discrete loga-
rithm in )3( 716⋅GF . This means that the Dis-
crete Logarithm Problem (DLP) in a finite field 
of 676 bit length was solved. This result can be 
a technical base for estimating secure key size 
when adopting pairing based cryptosystems.
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Various groups in the world have tradition-
ally challenged the calculation of the Discrete 
Logarithm Problem (DLP) in a finite field. 
Regarding key groups which consist of a group 
from mathematics research institute of The 
University of Bonn in Germany, Department of 
Defense of France, a group from Rennes math-
ematics research institute, National Institute of 
Information and Communications Technology 
(NICT), and Future University-Hakodate, bit 
counts for which calculations have succeeded 
can be compared as Fig. 1 below.

The composition of this paper is as follows. 
Firstly, the Discrete Logarithm Problem (DLP) 
in a finite field is described in 2. Secondly, 
Function Field Sieve (FFS) is described as an 
effective solution of the Discrete Logarithm 
Problem (DLP) in a finite field. The solution 
was also used in the collaborative research of 
National Institute of Information and Com-
munications Technology (NICT) and Future 
University-Hakodate. As Function Field Sieve 
(FFS) is one of the index calculus methods, the 
index calculus method is described in 3. In 4, 
an overview of reference [15], i.e. the Function 
Field Sieve (FFS) which was used to solve the 
Discrete Logarithm Problem (DLP) in a finite 
field of 676 bit length is described. In addition, 
key points of ingenuity and calculation results 
are stated in 5, and the feelings with regard 
to the collaborative research are summarized 
in 6.

Fig.1 Current records

2 �The Discrete Logarithm Problem 
(DLP) in a finite field

Firstly, the Discrete Logarithm Problem 
(DLP) in a finite field is described. The 
reduced residue class group of )( npGF , where 
p is characteristic and n is degree of field 
extension, is a cyclic group. Thus, a generator 
 *)( npGFg∈  exists and = >< gpGF n *)(  holds. 
Provided that:

)}1(,...,,{ 12 ==>< −npgggg

the “Discrete Logarithm Problem (DLP) in a 
finite field” is a problem asking to “find the 
integer number ]1,1[ −∈ npe  which satisfies 

egX =  against given  *)( npGFX∈  and generator 
g.” As the progression },...,,{ 12 −npggg  acts like 
a random number sequence, its solution is dif-
ficult. The degree of calculation required for a 
Function Field Sieve (FFS) which is one of the 
actual effective methods is ],3/1[ cL np  where 
the constant number c exists.
Example 1)

}22,12,2,2,1,,2,1{
))1/(])[3(()3( *2*2

++++=
+=

xxxxxx
xxGFGF

Where 1+x  is generator. Given that 1+= xg ,

}1,2,,22,2,12,2,1{},...,,{ 82 ++++= xxxxxxggg
 

holds.
Given that the defining polynomial of the qua-
dratic extension field is 12+x  and generator is 

1+x , the discrete logarithm )22(log 1 ++ xx  of  
22 +x  are 5. As the cycle of *2)3(GF  is 8, this 

means that the Discrete Logarithm Problem 
(DLP) of 4 bits has been solved.

In this paper, the solution of the Discrete 
Logarithm Problem (DLP) for )3( 716⋅GF , i.e. 
the Discrete Logarithm Problem (DLP) of 676 
bits is mainly discussed.

3 �Index calculus method

One of the index calculus methods, a Func-
tion Field Sieve (FFS), is a method to solve the 
Discrete Logarithm Problem (DLP) effectively. 
Thus, the index calculus method is described 
in this section. Additionally, in this section, 
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let the finite field be a prime field )(pGF  of 
characteristic p which is an easier field and not 
required to be denoted by a polynomial ring. 
Therefore, the Discrete Logarithm Problem 
(DLP) is given by the following equation giv-
ing that g is generator *)(pGFX∈ :

)(modpXge ≡

3.1 �Policy of index calculus method
Policy of index calculus method is 

described. As for *)(pGFX∈ , X can be consid-
ered to be an integer number. So, we assume 
that X is factorized into the product of prime 
number iρ  which is not over an integer number 
B, and the prime factorization is known:

∏
≤

=
B

e
i

i

iX
ρ

ρ

An integer number whose prime divisors are 
not over B is called a B-smooth integer num-
ber. In addition, we also assume a discrete 
logarithm iz  of each prime number iρ  which is 
not over B, i.e. an integer number 10 −≤≤ pzi  
which satisfies pg iz

i mod≡ρ  is known. This 
leads to

)(mod pggX Bi
ii

i

ii

i

i

ez

B

ez

B

e
i

∑
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and 

∑
≤

−≡
B

ii
i

peze
ρ

))1(mod (

holds against discrete logarithm e of X. As 

ii ze ,  is known, e is given.
As stated earlier, there are two assump-

tions for the index calculus method. The first 
assumption that X is B-smooth can be solved 
by transforming the Discrete Logarithm Prob-
lem (DLP), i.e. given that )(mod' pXgX a=  is 
B-smooth against an integer number ag  which 
is randomly generated, the discrete logarithm 
ea +  of 'X  can be obtained by the index cal-

culus method, and e can be obtained as a is 
known. Another assumption is that the discrete 
logarithm of the factor base is known, and its 
calculus method will be described in 3.2.

3.2 �Calculus method of discrete loga-
rithm of factor base

The calculation of the discrete logarithm 
of the factor base is a relation exploration and 
simultaneous linear congruence equations 
which are given by the relation exploration. 
Firstly, the relation exploration is described.

In the relation exploration, an integer num-
ber )(mod pg ja  is generated randomly and what 
is to be B-smooth is collected. Note that

)(mod
,

,, pggg Bi
jii

i

jii

i

jij

ez

B

ez

B

e
i

a ∑
≡≡= ≤∏∏

≤≤

ρ

ρρ

ρ

holds, and by this relation, the congruence 
equation

)1(mod, −≡∑
≤

pzea
B

ijij
iρ

is given. As jij ea ,,  is known, the discrete loga-
rithm of factor base iz  can be obtained by solv-
ing simultaneous linear congruence equations 
to be configured.

3.3 �Outline of index calculus method
In this section, algorithms of index calcu-

lus method are organized.
Parameter selection phase: Set parameter 
B so that the overall calculation cost is mini-
mized.
(For the Function Field Sieve (FFS) in the next 
section, this applies to the polynomial selec-
tion phase.)
Relation exploration phase: Generate an inte-
ger number )(mod pg ja  randomly, collect those 
that are B-smooth, and generate a sufficient 
number of the following congruence equations:

)1(mod, −≡∑
≤

pzea
B

ijij
iρ

Linear algebra phase: Find the discrete loga-
rithm of all factor bases by solving simultane-
ous congruence equations.
Discrete logarithm calculation phase: Gen
erate an integer number ag  randomly against 
a given integer number X, and find what leads 

)(mod' pXgX a=  to be B-smooth. Calculate 
the discrete logarithm of X using the discrete 
logarithm of the factor base and a.
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4 �Function Field Sieve (FFS)

In this section, an overview of the Func-
tion Field Sieve (FFS) is described (see refer-
ence [15] for more information). This method 
consists of four phases, i.e. polynomial selec-
tion phase (parameter selection phase), rela-
tion exploration phase, linear algebra phase, 
and discrete logarithm calculation phase. Let 
a given finite field have a form of )3( 6 nGF ⋅ . In 
addition, let g be a generator of reduced resi-
due class groups, and consider finding the dis-
crete logarithm Xglog  of >∈< gX .
Polynomial selection phase: At this phase, 
parameter values SRBmdH ,,,deg,  related to 
the calculation cost of the Function Field Sieve 
(FFS) which is described below is determined. 
Thus, we evaluate the later total calculation 
amount and calculate SRBmdH ,,,deg,  to mini-
mize the value.

Next, select an nth-order polynomial )(xf )(xf  
which is irreducible and monic in )3( 6GF . 
Note that a finite field )3( 6 nGF ⋅  can be denoted 
by )/ (])[3( 6 fxGF . Then, find a 2-variable 
polynomial ],)[3(),( 6 yxGFyxH ∈  which satis-
fies the eight conditions in [1]. In fact, a form of

HdyxyxH +=),(

was selected. Note that a surjective homomor-
phism

my
fxGFGFHyxGF n )/ (])[3()3()/ (],)[3(: 666

a

≅→Φ

exists. However, let ])[3( 6 xGFm∈  satisfy both 
fmxH mod0),( ≡  and ndm H ≥⋅deg . Next, 

select a smoothness bound B and select the 
factor base )(BFR  of the rational side and the 
factor base )(BFA  of the algebra side as follows:

}mod),(
|))/ (],)[3((,{)(

}eirreduciblis
,)deg (|])[3({)(
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However, let ))/ (],)[3(( 6 HyxGFDiv  be a factor 
group of )/ (],)[3( 6 HyxGF .
Relation exploration phase: At this phase, 
generate the congruence equation which is 

required to obtain the discrete logarithm of the 
factor base in the index calculus method.

Find the values of ))(#)(#( BFBFF AR +≥  of 
a pair (r, s) which satisfies the following con-
ditions, and where r and s are prime numbers 
respectively, against ])[3(, 6 xGFsr ∈  whose 
order is not over B:

∏
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However, jt  is uniquely determined by srj ,,ρ , 
and let r be monic. In other words, find a pair 
(r, s) which enables )/,()(, rsxHrsrm Hd −−+  to 
be factorized into a prime divisor which is not 
over B. Such (r, s) is called double B-smooth. 
Note that the following relation holds:

))13(/)13(mod(loglog 6

)(,
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However, for
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jj tyh ,,)( ρλλκ

let h be a class number of )/ (])[) (3( 6 HyxGF .
Linear algebra phase: At this phase, find the 
discrete logarithm of the factor base by solving 
the linear equation given by the congruence 
equation generated in the relation exploration 
phase.

From F number of relations, the following 
matrix is obtained,

,
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and linear equation
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is to be solved.
Discrete logarithm calculation phase: At this 
phase, find the Discrete Logarithm Problem 
(DLP) for the given target using the discrete 
logarithm of the factor base found in the linear 
algebra phase.

Obtain the solution by finding integer num-
bers ji fe ,  which satisfy the following condi-
tions:

))13(/)13(mod(log

loglog

6

)(,

6
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+≡
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5 �About calculation of GF (36·71)

For calculation of the Discrete Logarithm 
Problem (DLP) in a finite field addressed in 
reference [15], we succeeded in high-speed cal-
culation in the relation exploration phase and 
the linear algebra calculation phase by using 
structural characters (Free-Relation and Galois 
Action) of )3( 716⋅GF .

5.1 �Introduction of Free-Relations
At the relation exploration phase, a suffi-

cient number of relations need to be generated 
so that a discrete logarithm of factor base can 
be obtained in the linear algebra phase, i.e. the 
generated linear equation has a solution.

Generally, the relation is generated by a 
sieve, and its calculation cost accounts for a 
large percentage of the calculation cost of a 
Function Field Sieve (FFS). On the other hand, 
a relation which is called “Free-Relation” and 
that can be obtained without using a sieve 
exists, and the cost of the sieve can be reduced 
by using it.

The number of relations depends on order 

Hd  of y of ),( yxH  and the characteristic of a 
finite field. In fact, in many cases, approxi-
mately HA dBF /)(#  number of Free-Relations 
exist, and the less the characteristic is the 
greater the number increases. In [15], we suc-
ceeded in obtaining 2/)(# BFA  number of Free-
Relations by selecting 6),( yxyxH += .

5.2 �Introduction of Galois Action
The linear algebra phase also accounts for 

a large percentage of the calculation cost of a 
Function Field Sieve (FFS). Thus, provided 
that the size of matrix and vector is reduced 
maintaining the condition to enable obtaining 
a discrete logarithm for all factor bases, i.e. 
the number of variables in the linear equation 
is reduced, the calculation cost can be reduced 
significantly.

Galois Action is a method to relate one fac-
tor base to another using the Frobenius map  φ . 
For example, when a factor base ρ  corresponds 
to another factor base 'ρ  by the Frobenius 
map  φ ,

n3)(' ρρφρ ==

holds. This means that

ρρ g
n

g log3'log =

holds, and with this, the variable which exists 
in congruence equation and corresponds to 

'log ρg  can be eliminated. In addition, the value 
which corresponds to the eliminated variable 
can be calculated from ρglog , the condition to 
enable discrete logarithms to be obtained for 
all factor bases is ensured.

Provided that a finite field is )3( 6nGF , 
6/6 =nn  holds. Therefore, from one factor 

base, up to six factor bases (including the orig-
inal one) can be related to many factor bases 
using the Frobenius map. This means that the 
number of variables can be reduced to 1/6, and 
as a result, the calculation cost of the linear 
algebra phase can be reduced to 1/62.

5.3 �Calculation result
We used 18 servers for calculation, 12 serv-

ers from National Institute of Information and 
Communications Technology (NICT) and 6 
servers from Future University-Hakodate, and 
succeeded in calculation in approximately 33 
days with 96 Xeon CPU cores. This corre-
sponds to approximately 9 years of calculation 
time with 1 Xeon core (Fig. 2).

Hereinafter, each phase in calculation of 
[15] is stated.
Polynomial selection phase: This is an impor-
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tant phase to determine calculation amount of 
the remaining phases, however, as an effective 
selection method is proposed, calculation is 
scarcely required.
Relation exploration phase: This phase 
requires the largest number of calculations 
among the four phases. However, calculations 
can be performed faster by using many calcu-
lators as parallel calculation can be performed 
with little communication. By using Free-
Relations, calculation in this phase could be 
performed approximately eight times as fast as 
before. Approximately 18 days were required 
for calculation of this phase.
Linear algebra phase: This phase also 
requires the largest number of calculations 
in the same way as in the relation explora-
tion phase, however, as communications are 
required to perform parallel calculation, high-
speed calculation cannot simply be performed 
using many calculators. By introducing Galois 
Action, we succeeded in performing calcu-
lation in this phase approximately thirty-six 
times as fast as before. This enabled calcula-
tions in approximately 12 hours in this phase 
which used to require calculations which were 

nearly equal to those of relation exploration.
Discrete logarithm calculation phase: At 
this final phase, same calculation as that in the 
relation exploration, however, not so many cal-
culation amounts are required compared with 
the relation exploration. We succeeded in cal-
culating discrete logarithm, which is to be a 
solution, in 14 days using only 6 servers from 
Future University-Hakodate.

6 �Collaborative research of Future 
University-Hakodate and Kyushu 
University

The first half of the collaborative research 
was carried out with the Takagi research room 
of Future University-Hakodate. We went to a 
lot of trouble, including those of working at a 
distance, to show successful results. For the lat-
ter half, we carried out collaborative research 
with Kyusyu University along with a transfer 
of the Takagi research room, and conducted an 
internship. This internship significantly con-
tributed to the efficiency of the research, and 
was meaningful.

Fig.2 Computational experiment environment (totally 96 core)
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7 �Summary

We succeeded in calculating the Discrete 
Logarithm Problem (DLP) in a finite field 

)3( 716⋅GF  through collaborative research with 
the Takagi research room of Future Univer-
sity-Hakodate, and achieved a world record of 
676 bits for the Discrete Logarithm Problem 
(DLP). We continue to carry out the collabora-
tive research with Takagi research room even 

after it transferred to Kyushu University to 
pursue the establishment of a new record.
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