
1 	 Information

The Internet has grown into an infrastructure support-
ing social activities and economic activities. However, it is 
difficult to introduce new functions, and there is a need to 
fundamentally redesign its architecture. To do this, work 
to revise its architecture is proceeding in Japan as the New-
Generation Network[1], and in the U.S. as the NSF’s Future 
Internet Design (FIND) initiative[2]. Until now, multiple 
novel architectures have been proposed: Content Centric 
Networking (CCN)[3], ID/locator separation[4], etc. To 
evaluate these architectures, large scale experiments are 
required, and multiple testbeds are being constructed in 
Japan, the U.S. and Europe: JGN-X[5], Global Engineering 
for Network Innovation (GENI)[6], etc.

In a testbed, multiple architecture experiments are ex-
ecuted at the same time, which requires computing re-
sources and network resources such as communication 
links and router CPUs to be independently allocated to 
each experiment, with guarantees that the experiments 
won’t interfere with each other.

Network virtualization technology enables independent 
resource allocation, so it is used in many testbeds. In such 
testbeds, “slices” (virtual networks comprised of virtual 
routers and communication links) are allocated to each 
experiment, and an experimenter (hereinafter called a 
“user”) can create his/her own programs on a virtual 
router, so various architectures can be implemented on the 
slices.

Although testbeds based on conventional virtualization 
technologies provide network management functions such 
as allocation and release of resources, sufficient program-
ming environments are not provided. Consequently, this 
R&D implemented a flexible programming environment 

(hereinafter “platform”) that enables programming in 
which even users without much network knowledge can 
reuse previously developed program modules, like combin-
ing toy blocks. This paper gives an overview of network 
virtualization, then describes this platform’s design and 
implementation.

2	 Network virtualization overview

There are hopes that network virtualization technology 
can enable large-scale experiments. Network virtualization 
provides virtual networks called slices, comprised of vir-
tual routers and virtual links. The slices share with other 
slices their physical nodes (called “virtualization nodes”) 
and links; the resources allocated to each slice are guaran-
teed by the virtualization platform (a platform network 
comprised of virtualization nodes and physical links, which 
provides the slices).

To achieve network virtualization, it is important that 
the network satisfies requirements, such as resource separa-
tion, scalability, and performance, and is extendable, pro-
grammable and secure, with management functions[7]. 
Resource separation is the most important requirement, 
guaranteeing the exclusive use of virtual links and CPUs of 
virtual routers allocated to slices. If users can create pro-
grams executed on virtual routers, this creates vulnerabili-
ties in the virtual network, so enhanced security is required. 
Scalability that enables the execution of multiple experi-
ments at the same time is important, and OpenFlow is 
sometimes used to enable the multiplexing of multiple 
slices in physical links[8].

Programs executed in virtual routers can enable packet 
flow, and can also process packets, but this requires high 
performance, as mentioned in the previous paragraph. 
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Moreover, user programs must be allocated and executed 
in multiple virtual routers, so how to allocate them in 
virtual routers is also important.

Among the requirements mentioned above, the plat-
form in this paper focuses on scalability, programmability, 
and management of functions that comprise network ser-
vices. It also has characteristics that support the develop-
ment and allocation of programs executed on the slices, 
and which enables the configuration of slices on multiple 
virtualization platforms.

3	 Services design environment

3.1	 Outline
The platform created by this research and development 

aims to support the development of programs that execute 
on virtual routers provided in the virtualization platform, 
and experiments and demonstrations of the programs[9]. It 
is not efficient for the users to develop new architectures 
from scratch, so the platform enables the users to create 
modules of protocol processes like x-kernel[10] and Click 
Modulator[11], and boosts the productivity of program de-
velopment through the reuse of smaller modules. 
Specifically, the smallest modules that can execute on vir-
tual routers are called blocks, and the platform provides a 
program development environment in which the blocks 
can be combined like toy blocks.

As shown in Fig. 1, this platform is comprised of a 
services design environment, a services allocation environ-
ment, and a slice exchange point. A conventional Click 
Modulator, etc. has a block group executed with a single 

host and router, however this platform has a block group 
on multiple virtual routers. Below, the group of these rout-
ers that execute one architecture is called a “service.” To 
enable experiments on a global scale, the slice exchange 
point provides mutual connectivity with virtualization 
platforms developed outside Japan, and slices can be con-
structed over multiple virtualization platforms.

3.2	 Blocks
To handle packet processes such as calculating check-

sums and resending packets, Click Modulator modules are 
provided as blocks, as described below.

(1)	User level Click blocks are blocks developed in 
accordance with Click, and are executed in the user 
space.

(2)	Kernel level Click blocks are blocks developed in 
accordance with Click, and can only be executed on 
a kernel level Click driver.

(3)	User process blocks can be provided as Click mod-
ules, and user developed programs can also be 
provided as blocks.

Note that low layer packet processes would be devel-
oped as user level and/or kernel level Click blocks. On the 
other hand, upper layer protocol processes can be programs 
developed using various programming languages, executed 
as blocks in the user space.

An input/output interface between the blocks is defined 
as a port. The port is defined as a set of attribute values 
such as name and role. Between two blocks, only the ports 
which have a name and all attribute values matching can 

Fig.F 1　Platform overview
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connect. The ports are used to connect two blocks that are 
in the same virtual router or are running in different vir-
tual routers. For example, the blocks that execute an HTTP 
protocol client and server would be defined as HTTP 
(client, …), HTTP (server, …). Ports are described in XML, 
but the details are omitted here.

The virtual routers use Linux OS, so currently the 
blocks described above must be in programs that can run 
on Linux.

3.3	 Service blueprint design tool
First, before developing a service according to the 

process in Fig. 2, the user develops each block, or searches 
for a program developed by another person and prepares 
block definitions so this platform can handle those blocks. 
A block definition is comprised of the block name, and the 
port definitions.

Next, the user designs the service blueprint with the 
prepared block group. The service blueprint is a service 
reference, so instead of planning specific virtual routers, 
this combines the minimum block group to comprise the 
service (service development on this platform is equivalent 
to creating a service blueprint).

Figure 3 shows an example of a service blueprint that 
defines a TCP/IP service. It connects 3 virtual routers that 
are an IP router and send/receive hosts. The router has IP 
and Ethernet blocks; the hosts have TCP, IP and Ethernet 
blocks. The service blueprint can be written in an XML file, 

and can also be created by using a service blueprint design 
tool with a GUI.

3.4	 Service allocation design tool
A service blueprint does not specify details on indi-

vidual implementations such as which virtual router the 
block executes on, which virtual routers to connect, etc. 
Therefore, the user first defines a slice comprised of vir-
tual routers and virtual links, in accordance with the vir-
tualization platform’s agreement. Next, the user creates a 
service allocation plan for virtual routers in the service 
blueprint by designating in the slice definition, with the 
service allocation design tool, the virtual routers on which 
to execute. The service allocation plan allocates a block 
group to a virtual router group and, according to this plan, 
installs the block group on the virtual routers to enable 
execution of the service.
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4	 Service design environment

4.1	 Physical configuration
In accordance with the service allocation plan, the 

“service allocation environment” is the name for functions 
that allocate a block group to virtual routers, and start and 
stop the service. As shown in Fig. 4, this environment is 
comprised of a virtual router controller executed on a 
virtual router, and a service control node that sends com-
mands to allocate, execute and stop the block group. The 
service control node is implemented as a Linux based 
machine different from virtual routers; virtual routers are 
connected to the virtualization platform by an independent 
physical network (control plane).

There is only one service control node for a virtualiza-
tion platform. It sends commands to allocate, execute and 
stop all services executed on the slice created on the virtu-
alization platform (that is, block groups for services).

4.2	 Physical configuration
Programs called the service controller and virtual 

router controller are executed on the service control node 
and virtual router, respectively. They are connected by 
TCP/IP communications on the control plane, and provide 
functions such as to allocate, execute and stop the service.
A)	 Slice creation

The user sends a slice definition via the service control 
node to the virtualization platform, and creates the slice. 
As a result, a secure shell server process is launched in the 
virtual router created (the service controller is not directly 
involved in this function; it is executed by the virtualization 
platform).
B)	 Service allocation function

According to the service allocation plan and slice defi-
nition received from the user, the service controller decides 
the virtual router that allocates the block, and obtains from 
the virtualization platform the virtual router’s IP access and 
TCP port number on the control plane. After that, it sends 
an executable file (specifically, a Debian Linux package) 
that combines the block group into one, via sshd to the 
virtual router controller on the virtual router. After that, 
the virtual router controller installs the received executable 
file into the virtual router.
C)	 Service launch and stop

After installing the required executable file in the ser-
vice, the service controller can instruct the virtual router 
controller to launch/stop the executable file installed in the 
virtual router according to the user’s designations. The 

virtual router controller launches/stops the block group 
(executable file) that corresponds to one virtual router. For 
example, if the block group that is executed on a virtual 
router is all user level Click blocks, then a user level Click 
driver is launched/stopped. Or, if the user process blocks 
and a user level Click driver are mixed together, it 
launches/stops both.

5	 Service example

Aiming to verify the service allocation environment we 
developed, in order to have an upper layer protocol using 
user process blocks we developed a video transmission 
service. This video transmission service was separately 
implemented by modularizing a program implemented on 
Linux[12] as a user process block, as shown in Fig. 5. The 
service uses TCP blocks, IP blocks and Ethernet blocks to 
comprise the load balance block (BL), content repository 
block (BC) and transcode block (BT). The video playing 

Fig.F 4　Implementation of service allocation environment
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terminal is outside the slice, so the slice is delivered via the 
access gateway (AGW) provided by the virtualization 
platform. Blocks at or below TCP use the standard TCP/
IP stack in the virtual router’s kernel (Linux). Table 1 shows 
the port definitions of these blocks.

In this service, first, the content repository that received 
the transmission request sends to the video playing termi-
nal the content with a resolution that suits the bandwidth 
of its access network. The transmission request and content 
transmission are done via the socket_stream port that 
connects with the standard TCP/IP stack (here, letters c 
and s show the client and server roles). When there is 
congestion in the access network, the video playing termi-
nal sends to the load balance block a request to reduce 
(transcode) the resolution of the content, and that block 
sends a request via the HTTP_sig_content_notify port to 
the transcoding block, for it to start transcoding. On the 
other hand, the transcoding block sends via HTTP_sig_re-
quest_media to the content repository block a request to 
change the content’s destination from the video playing 
terminal to that same transcoding block. As a result, 
content sent from the content repository block is trans-
coded at the transcoding block, and then sent to the video 
playing terminal.

Previously developed programs for content reporting, 
etc. can be processed on this platform merely by writing 
the block definitions, and this service can be executed on 
the virtualization platform in a short time.

6	 Mechanism for integrated management 
between virtualization platforms

6.1	 Outline
To execute services over multiple virtualization plat-

form architectures to extended areas, we implemented 
coordination between slices on different virtualization 

platforms. Such coordination is called “federation.” The 
federation implements functions between virtualization 
platforms with different architectures to construct and 
monitor multiple slices on different virtualization platforms 
from one of the platforms. To do this, we developed a Slice 
Exchange Point (SEP)[13] architecture that coordinates 
control planes and data planes between the virtualization 
platforms, and a common application programmable inter-
face (API) to provide service construction and monitoring 
functions between virtualization platforms.

6.2	 SEP architecture
Figure 6 shows an outline of the SEP architecture. The 

SEP architecture is comprised of centrally placed control 
and management functions (SEP core), and functions that 
mediate between the virtualization platform (“domain” in 
the figure) and the SEP core. SEP has the following two 
broad goals. First, SEP makes it possible for the user to use 
his typically used control functions provided by one of 
multiple virtualization platforms, to control and manage 
the entire slice deployed on multiple virtualization plat-
forms. SEP also enables unrestricted use of unique func-
tions that other virtualization platforms have.

To achieve these two goals, it is desirable that SEP has 
the following four features.
	 I.	 Independence from virtualization platforms

	 Architecture in which the control and management 
mechanism does not rely on a specific virtualization 
platform.

	 II.	 Single interface
	 Can use a single interface to coordinate each virtu-

alization platform and SEP.
	 III.	 Abstractness

	 Extract the common capabilities and features of the 
resources and functions of multiple virtualization 
platforms, and handle them by control in SEP.

	 IV.	 Extendibility of functions
	 Corresponding to the extension of individual func-

tions of the virtualization platform, the same virtual 
infrastructure and SEP interwork can be extended.

The gatekeeper and gateway have the following func-
tions.
z	Gatekeeper (GK)
	 Converts the control plane. Specifically, mutually 

converts each virtualization platform’s unique com-
mand/release definitions and the SEP core’s com-
mand/release definitions.

Blocks Port definitions
Blocks to be 
connected 

BL
socket_stream（c） TCP/IP blocks
HTTP_sig_content_notify（c） BT

BC
socket_stream（c） TCP/IP blocks
HTTP_sig_request_media（s） BT

BT

socket_stream（c） TCP/IP blocks
HTTP_sig_content_notify（s） BL

HTTP_sig_request_media（c） BC

TableT 1　Port definition of each block
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z	Gateway (GW)
	 Relays the data plane. Converts the format (protocol, 

network parameters, etc.) of packets between the 
virtualization platform and SEP network. GW is 
controlled by the GK.

In the figure, “Source Domain” shows the virtualization 
platform that originates the slice control (create, update, 
delete). “Destination Domain” shows the virtualization 
platform that receives control from the Source Domain.

6.3	 Common slice definition
Figures 7 and 8 show that in SEP, one controls and 

manages his/her own slice definitions (entire slice defini-
tions) that do not rely on the virtualization platform to 
which the SEP connects. We assume that the status transi-
tions of the entire slice of each virtualization platform that 
connects to SEP, and of individual slices (virtual routers 
and links), are as shown in Figs. 7 and 8, and the status 
transitions of a common slice flow are shown as in Fig. 7. 
Implementations in each virtualization platform could use 
status transitions that differ from Figs. 7 and 8, and in that 
case, each virtualization platform’s GK would absorb the 
differences in the status transition.

6.4	 Data plane
A virtual link that links virtual routers belonging to 
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different virtualization platforms (virtual link between 
virtualization platforms) is comprised of a virtual link in a 
virtualization platform and a virtual link that links the 
virtualization platforms (Fig. 9). These are connected by a 
GW. A virtual link between virtualization platforms is 
logically one link.

In SEP, one can freely decide the parameters (link type, 
MAC address, VLAN number, etc.) used for a virtual link 
between virtualization platforms, not dependent on imple-
mentation method of the network in each virtualization 
platform. In this platform, parameters used in a virtual link 
between virtualization platforms are decided by the two 
methods described below.

(a)	 Negotiation between GK
	 The GK manages the links of the virtualization 

platform. The GK of each virtualization platform 
negotiates the parameters through the signal process 
that is the common slice’s construction request and 

its response. For example, the GK decide a usable 
VLAN number, etc.

(b)	Decision by SEP core
	 The SEP core manages the link of the network (SEP 

network) that constitutes the virtual link between 
virtualization platforms, and sets the parameters 
required in the common slice. It also plays the role 
of notifying to the virtualization platform that re-
quested the slice composition, sending a notice with 
the parameters of the virtualization platform that 
receives the slice composition request.

7	 Demonstration experiment

7.1	 Outline
For service allocation, execution and federation, a 

demonstration was done at three locations: in Japan, the 
U.S. and Europe. Its outline is described here.

Fig.F 9　State transitions of virtual resources (virtual routers and links)
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7.2	 Federation demonstration between three 
locations: Japan, USA, and Europe

Figure 10 shows the federation system configuration. 
These three virtualization platforms have management 
mechanisms that independently construct slices: VNode 
virtualization platform (NICT), ProtoGENI virtualization 
platform (The University of Utah, USA), and Virtual Wall 2 
virtualization platform (iMinds, Belgium). Virtual Wall 2 
uses ProtoGENI’s Aggregate Manager-API (AM-API) as its 
management mechanism, but in federation from ProtoGENI 
using SEP in the direction of Virtual Wall 2 and VNode, 
this operation goes from the slice creation and control 
commands of ProtoGENI’s AM-API, then passes through 
SEP, and again the GK on the Virtual Wall 2 side reconverts 
it into an AM-API for Virtual Wall 2.

The control plane is implemented by three GK (one for 
each virtualization platform) and the SEP core. The SEP 
core and GKs of VNode and ProtoGENI and Virtual Wall 2 
are each implemented by a server installed at The University 
of Utah.

The SEP core takes a common slice settings (configura-
tion) command requested from one virtualization platform, 
sends the command to two virtualization platforms, 
merges the reply returned from those two virtualization 
platforms, and returns it as one common reply to the 
originally requesting virtualization platform.

We confirmed that in the connection environment 
shown in Fig. 10, the slice shown in Fig. 11 is configured, 
and we can achieve federation between virtualization 
platforms with different implementation methods. With 
this SEP architecture, by functions to convert commands 
and slice definitions, we achieved a single developer inter-
face and independence from the virtualization platform, 

and enabled the developer to manage (create, control) the 
entire slice the developer created by federation, via the 
virtualization platform control functions that the devel-
oper is accustomed to using normally. We thereby demon-
strated that it is possible to configure a slice that exceeds 
the limits of resources (virtual routers and links) of one 
virtualization platform.

8	 Conclusion

This paper describes a platform that enables the con-
struction of flexible network service systems, in which even 
a user with little knowledge of the network can do pro-
gramming by combining previously developed program 
modules—like putting toy blocks together.

With the aim of developing a program that is executed 
on virtual routers provided by the virtualization platform, 
and to support demonstration, this platform provides 
programming development in which the protocol pro-
cesses and various functions of the network service system 
are made into modules, and the smallest units (blocks) 
executable on a virtual router are combined like toy blocks 
to boost the productivity of program development by reus-
ing modules.

The demonstration experiment (federation between 
Japan/USA/Europe) described in Section 7 was performed 
live during the IEICE Technical Committee on Network 
Virtualization (March 16–17, 2015 in Koganei, Tokyo), and 
at GEC22 held March 23–26, 2015 in Washington, D.C. 
This R&D NICT was performed as the NICT contract 
“Research and Development of Network Virtualization 
Platform Technology to Support the New-Generation 
Network, Issue B, Research and Development of a Network 
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Platform that Can Create Services,” done jointly by the 
Interfaculty Initiative in Information Studies at The 
University of Tokyo, NEC Corporation, Hitachi, Ltd., and 
KDDI R&D Laboratories Inc.
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