
1 	 Information

The Internet has grown into an infrastructure support-
ing social activities and economic activities. However, it is
difficult to introduce new functions, and there is a need to
fundamentally redesign its architecture. To do this, work
to revise its architecture is proceeding in Japan as the New-
Generation Network[1], and in the U.S. as the NSF’s Future
Internet Design (FIND) initiative[2]. Until now, multiple
novel architectures have been proposed: Content Centric
Networking (CCN)[3], ID/locator separation[4], etc. To
evaluate these architectures, large scale experiments are
required, and multiple testbeds are being constructed in
Japan, the U.S. and Europe: JGN-X[5], Global Engineering
for Network Innovation (GENI)[6], etc.

In a testbed, multiple architecture experiments are ex-
ecuted at the same time, which requires computing re-
sources and network resources such as communication
links and router CPUs to be independently allocated to
each experiment, with guarantees that the experiments
won’t interfere with each other.

Network virtualization technology enables independent
resource allocation, so it is used in many testbeds. In such
testbeds, “slices” (virtual networks comprised of virtual
routers and communication links) are allocated to each
experiment, and an experimenter (hereinafter called a
“user”) can create his/her own programs on a virtual
router, so various architectures can be implemented on the
slices.

Although testbeds based on conventional virtualization
technologies provide network management functions such
as allocation and release of resources, sufficient program-
ming environments are not provided. Consequently, this
R&D implemented a flexible programming environment

(hereinafter “platform”) that enables programming in
which even users without much network knowledge can
reuse previously developed program modules, like combin-
ing toy blocks. This paper gives an overview of network
virtualization, then describes this platform’s design and
implementation.

2	 Network virtualization overview

There are hopes that network virtualization technology
can enable large-scale experiments. Network virtualization
provides virtual networks called slices, comprised of vir-
tual routers and virtual links. The slices share with other
slices their physical nodes (called “virtualization nodes”)
and links; the resources allocated to each slice are guaran-
teed by the virtualization platform (a platform network
comprised of virtualization nodes and physical links, which
provides the slices).

To achieve network virtualization, it is important that
the network satisfies requirements, such as resource separa-
tion, scalability, and performance, and is extendable, pro-
grammable and secure, with management functions[7].
Resource separation is the most important requirement,
guaranteeing the exclusive use of virtual links and CPUs of
virtual routers allocated to slices. If users can create pro-
grams executed on virtual routers, this creates vulnerabili-
ties in the virtual network, so enhanced security is required.
Scalability that enables the execution of multiple experi-
ments at the same time is important, and OpenFlow is
sometimes used to enable the multiplexing of multiple
slices in physical links[8].

Programs executed in virtual routers can enable packet
flow, and can also process packets, but this requires high
performance, as mentioned in the previous paragraph.

Network Platform Enabling Flexible Services Composition

Yoshinori KITATSUJI

Development of cloud technology enables service developers to build service systems in a
simple and flexible manner. To gain the similar efficacy to the network service systems, technologies
of constructing virtualized networks and realizing simple and flexible construction network services
are rapidly developed. This paper introduces the research and development of realizing a network
platform enabling a flexible network services composition.

Title:J2015N-04-04.indd　p45　2016/02/24/ 水 13:06:08

45

4 Core Technologies for the New-Generation Network

Moreover, user programs must be allocated and executed
in multiple virtual routers, so how to allocate them in
virtual routers is also important.

Among the requirements mentioned above, the plat-
form in this paper focuses on scalability, programmability,
and management of functions that comprise network ser-
vices. It also has characteristics that support the develop-
ment and allocation of programs executed on the slices,
and which enables the configuration of slices on multiple
virtualization platforms.

3	 Services design environment

3.1	 Outline
The platform created by this research and development

aims to support the development of programs that execute
on virtual routers provided in the virtualization platform,
and experiments and demonstrations of the programs[9]. It
is not efficient for the users to develop new architectures
from scratch, so the platform enables the users to create
modules of protocol processes like x-kernel[10] and Click
Modulator[11], and boosts the productivity of program de-
velopment through the reuse of smaller modules.
Specifically, the smallest modules that can execute on vir-
tual routers are called blocks, and the platform provides a
program development environment in which the blocks
can be combined like toy blocks.

As shown in Fig. 1, this platform is comprised of a
services design environment, a services allocation environ-
ment, and a slice exchange point. A conventional Click
Modulator, etc. has a block group executed with a single

host and router, however this platform has a block group
on multiple virtual routers. Below, the group of these rout-
ers that execute one architecture is called a “service.” To
enable experiments on a global scale, the slice exchange
point provides mutual connectivity with virtualization
platforms developed outside Japan, and slices can be con-
structed over multiple virtualization platforms.

3.2	 Blocks
To handle packet processes such as calculating check-

sums and resending packets, Click Modulator modules are
provided as blocks, as described below.

(1)	User level Click blocks are blocks developed in
accordance with Click, and are executed in the user
space.

(2)	Kernel level Click blocks are blocks developed in
accordance with Click, and can only be executed on
a kernel level Click driver.

(3)	User process blocks can be provided as Click mod-
ules, and user developed programs can also be
provided as blocks.

Note that low layer packet processes would be devel-
oped as user level and/or kernel level Click blocks. On the
other hand, upper layer protocol processes can be programs
developed using various programming languages, executed
as blocks in the user space.

An input/output interface between the blocks is defined
as a port. The port is defined as a set of attribute values
such as name and role. Between two blocks, only the ports
which have a name and all attribute values matching can

Fig.F 1　Platform overview

Block (function element)

Service design tool
(The University
of Tokyo)

Service design like
combining toy blocks

Services allocation and
operation environment
(KDDI R&D Laboratories)

Easily allocate, configure
and execute blocks in virtual routers

Federation with
virtualization platforms
in various countries

Slice
exchange
point

(KDDI R&D
Laboratories,
Hitachi)

Coordinate access
network & slices

Access network
coordination
(NEC)

Node sliver
(virtual router)

Virtual domain A

Slice

Virtual
domain B

Other virtualization platform
Virtual router

Network virtualization platform

46　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-04-04.indd　p46　2016/02/24/ 水 13:06:08

4 Core Technologies for the New-Generation Network

connect. The ports are used to connect two blocks that are
in the same virtual router or are running in different vir-
tual routers. For example, the blocks that execute an HTTP
protocol client and server would be defined as HTTP
(client, …), HTTP (server, …). Ports are described in XML,
but the details are omitted here.

The virtual routers use Linux OS, so currently the
blocks described above must be in programs that can run
on Linux.

3.3	 Service blueprint design tool
First, before developing a service according to the

process in Fig. 2, the user develops each block, or searches
for a program developed by another person and prepares
block definitions so this platform can handle those blocks.
A block definition is comprised of the block name, and the
port definitions.

Next, the user designs the service blueprint with the
prepared block group. The service blueprint is a service
reference, so instead of planning specific virtual routers,
this combines the minimum block group to comprise the
service (service development on this platform is equivalent
to creating a service blueprint).

Figure 3 shows an example of a service blueprint that
defines a TCP/IP service. It connects 3 virtual routers that
are an IP router and send/receive hosts. The router has IP
and Ethernet blocks; the hosts have TCP, IP and Ethernet
blocks. The service blueprint can be written in an XML file,

and can also be created by using a service blueprint design
tool with a GUI.

3.4	 Service allocation design tool
A service blueprint does not specify details on indi-

vidual implementations such as which virtual router the
block executes on, which virtual routers to connect, etc.
Therefore, the user first defines a slice comprised of vir-
tual routers and virtual links, in accordance with the vir-
tualization platform’s agreement. Next, the user creates a
service allocation plan for virtual routers in the service
blueprint by designating in the slice definition, with the
service allocation design tool, the virtual routers on which
to execute. The service allocation plan allocates a block
group to a virtual router group and, according to this plan,
installs the block group on the virtual routers to enable
execution of the service.

Node ２

Node 1 Node
４ eth0eth1

eth0eth1
Node
３ eth0eth1

Block
development
process

Service blueprint design process

Service blueprint
design tool

Service blueprint

Service allocation design process
Service blueprint
allocation & design
tool

Service allocation plan

Service allocation process
Service
allocation
tool

Slice design
process

Slice definition

Block definition

eth0eth1

eth0eth1

eth0eth1

eth0eth1

Node ４

Node ３

Node ２

Node 1
eth0 eth1

eth0 eth1

eth0 eth1

eth0 eth1

TCP

IP

IP
TCP

IP

IP

Node ４

Node ３

Node ２

Node 1

TCPIPeth

eth eth eth eth eth eth

TCP

IP IP

TCP

IP
eth1

Fig.F 2　Service development and allocation process

Virtual router Virtual router Virtual router

eth eth eth eth

TCP

IP IP

TCP

IP

Fig.F 3　Service blueprint example

Title:J2015N-04-04.indd　p47　2016/02/24/ 水 13:06:08

47

4-4 Network Platform Enabling Flexible Services Composition

4	 Service design environment

4.1	 Physical configuration
In accordance with the service allocation plan, the

“service allocation environment” is the name for functions
that allocate a block group to virtual routers, and start and
stop the service. As shown in Fig. 4, this environment is
comprised of a virtual router controller executed on a
virtual router, and a service control node that sends com-
mands to allocate, execute and stop the block group. The
service control node is implemented as a Linux based
machine different from virtual routers; virtual routers are
connected to the virtualization platform by an independent
physical network (control plane).

There is only one service control node for a virtualiza-
tion platform. It sends commands to allocate, execute and
stop all services executed on the slice created on the virtu-
alization platform (that is, block groups for services).

4.2	 Physical configuration
Programs called the service controller and virtual

router controller are executed on the service control node
and virtual router, respectively. They are connected by
TCP/IP communications on the control plane, and provide
functions such as to allocate, execute and stop the service.
A)	 Slice creation

The user sends a slice definition via the service control
node to the virtualization platform, and creates the slice.
As a result, a secure shell server process is launched in the
virtual router created (the service controller is not directly
involved in this function; it is executed by the virtualization
platform).
B)	 Service allocation function

According to the service allocation plan and slice defi-
nition received from the user, the service controller decides
the virtual router that allocates the block, and obtains from
the virtualization platform the virtual router’s IP access and
TCP port number on the control plane. After that, it sends
an executable file (specifically, a Debian Linux package)
that combines the block group into one, via sshd to the
virtual router controller on the virtual router. After that,
the virtual router controller installs the received executable
file into the virtual router.
C)	 Service launch and stop

After installing the required executable file in the ser-
vice, the service controller can instruct the virtual router
controller to launch/stop the executable file installed in the
virtual router according to the user’s designations. The

virtual router controller launches/stops the block group
(executable file) that corresponds to one virtual router. For
example, if the block group that is executed on a virtual
router is all user level Click blocks, then a user level Click
driver is launched/stopped. Or, if the user process blocks
and a user level Click driver are mixed together, it
launches/stops both.

5	 Service example

Aiming to verify the service allocation environment we
developed, in order to have an upper layer protocol using
user process blocks we developed a video transmission
service. This video transmission service was separately
implemented by modularizing a program implemented on
Linux[12] as a user process block, as shown in Fig. 5. The
service uses TCP blocks, IP blocks and Ethernet blocks to
comprise the load balance block (BL), content repository
block (BC) and transcode block (BT). The video playing

Fig.F 4　Implementation of service allocation environment

↑ ユーザ空間

ユーザ ユーザ プ

ロセス プロセス

ブロック ブロッ

ク
eth0 eth1 eth2 eth3 eth4

Service control node

Service
controller

Virtual router
controller

User
process
block

User
process
block

Click
block

Click
block

↑User space

↓Kernel space

Control plane

 eth

Standard
TCP/IP stack Standard TCP, UDP/IP stack

Click
block

Click
block

Other virtual routers
(date plane)

Virtual links

sshd

Virtual router

User level
Click driver

Kernel level
Click driver

eth

eth eth

TCP

IP

IP

AGW

eth

TCP

IP

eth

TCP

IP

eth

Content
repository

Port Port
Transcoding Load

balancing

Slice

Access
network Video playing

terminal

Fig.F 5　Blocks configuration of video transmission service

48　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-04-04.indd　p48　2016/02/24/ 水 13:06:08

4 Core Technologies for the New-Generation Network

terminal is outside the slice, so the slice is delivered via the
access gateway (AGW) provided by the virtualization
platform. Blocks at or below TCP use the standard TCP/
IP stack in the virtual router’s kernel (Linux). Table 1 shows
the port definitions of these blocks.

In this service, first, the content repository that received
the transmission request sends to the video playing termi-
nal the content with a resolution that suits the bandwidth
of its access network. The transmission request and content
transmission are done via the socket_stream port that
connects with the standard TCP/IP stack (here, letters c
and s show the client and server roles). When there is
congestion in the access network, the video playing termi-
nal sends to the load balance block a request to reduce
(transcode) the resolution of the content, and that block
sends a request via the HTTP_sig_content_notify port to
the transcoding block, for it to start transcoding. On the
other hand, the transcoding block sends via HTTP_sig_re-
quest_media to the content repository block a request to
change the content’s destination from the video playing
terminal to that same transcoding block. As a result,
content sent from the content repository block is trans-
coded at the transcoding block, and then sent to the video
playing terminal.

Previously developed programs for content reporting,
etc. can be processed on this platform merely by writing
the block definitions, and this service can be executed on
the virtualization platform in a short time.

6	 Mechanism for integrated management
between virtualization platforms

6.1	 Outline
To execute services over multiple virtualization plat-

form architectures to extended areas, we implemented
coordination between slices on different virtualization

platforms. Such coordination is called “federation.” The
federation implements functions between virtualization
platforms with different architectures to construct and
monitor multiple slices on different virtualization platforms
from one of the platforms. To do this, we developed a Slice
Exchange Point (SEP)[13] architecture that coordinates
control planes and data planes between the virtualization
platforms, and a common application programmable inter-
face (API) to provide service construction and monitoring
functions between virtualization platforms.

6.2	 SEP architecture
Figure 6 shows an outline of the SEP architecture. The

SEP architecture is comprised of centrally placed control
and management functions (SEP core), and functions that
mediate between the virtualization platform (“domain” in
the figure) and the SEP core. SEP has the following two
broad goals. First, SEP makes it possible for the user to use
his typically used control functions provided by one of
multiple virtualization platforms, to control and manage
the entire slice deployed on multiple virtualization plat-
forms. SEP also enables unrestricted use of unique func-
tions that other virtualization platforms have.

To achieve these two goals, it is desirable that SEP has
the following four features.
	 I.	 Independence from virtualization platforms

	 Architecture in which the control and management
mechanism does not rely on a specific virtualization
platform.

	 II.	 Single interface
	 Can use a single interface to coordinate each virtu-

alization platform and SEP.
	 III.	 Abstractness

	 Extract the common capabilities and features of the
resources and functions of multiple virtualization
platforms, and handle them by control in SEP.

	 IV.	 Extendibility of functions
	 Corresponding to the extension of individual func-

tions of the virtualization platform, the same virtual
infrastructure and SEP interwork can be extended.

The gatekeeper and gateway have the following func-
tions.
z	Gatekeeper (GK)
	 Converts the control plane. Specifically, mutually

converts each virtualization platform’s unique com-
mand/release definitions and the SEP core’s com-
mand/release definitions.

Blocks Port definitions
Blocks to be
connected

BL
socket_stream（c） TCP/IP blocks
HTTP_sig_content_notify（c） BT

BC
socket_stream（c） TCP/IP blocks
HTTP_sig_request_media（s） BT

BT

socket_stream（c） TCP/IP blocks
HTTP_sig_content_notify（s） BL

HTTP_sig_request_media（c） BC

TableT 1　Port definition of each block

Title:J2015N-04-04.indd　p49　2016/02/24/ 水 13:06:08

49

4-4 Network Platform Enabling Flexible Services Composition

z	Gateway (GW)
	 Relays the data plane. Converts the format (protocol,

network parameters, etc.) of packets between the
virtualization platform and SEP network. GW is
controlled by the GK.

In the figure, “Source Domain” shows the virtualization
platform that originates the slice control (create, update,
delete). “Destination Domain” shows the virtualization
platform that receives control from the Source Domain.

6.3	 Common slice definition
Figures 7 and 8 show that in SEP, one controls and

manages his/her own slice definitions (entire slice defini-
tions) that do not rely on the virtualization platform to
which the SEP connects. We assume that the status transi-
tions of the entire slice of each virtualization platform that
connects to SEP, and of individual slices (virtual routers
and links), are as shown in Figs. 7 and 8, and the status
transitions of a common slice flow are shown as in Fig. 7.
Implementations in each virtualization platform could use
status transitions that differ from Figs. 7 and 8, and in that
case, each virtualization platform’s GK would absorb the
differences in the status transition.

6.4	 Data plane
A virtual link that links virtual routers belonging to

CreateSlice

DeleteSlice

CreatedNon Existing

Add
Delete
Run
Stop

Fig.F 7　State transitions of slice

CreateSlice

Add

Delete

DeleteSlice

Run

Created Executed Non Existing

Stop

Delete

DeleteSlice

Fig.F 8　State transitions of virtual resources (virtual routers and
links)

Fig.F 6　SEP architecture outline

SEP

GW

Developer
Submit a slice
creation request

SEP
core

Source
Domain

Common API

Node

NodeGW

GW Node

Request

Reply

Request

Reply

Common API
Reply

Control Plane

Data Plane
Inter‐domain
network

GK

GK

GK
Request

Common API …
…

SEP
Source
Domain

Destination Domain 1

Destination Domain 1

Destination Domain n

Destination Domain n

GK: Gatekeeper
SEP: Slice Exchange Point
GW: Federation Gateway

50　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-04-04.indd　p50　2016/02/24/ 水 13:06:08

4 Core Technologies for the New-Generation Network

different virtualization platforms (virtual link between
virtualization platforms) is comprised of a virtual link in a
virtualization platform and a virtual link that links the
virtualization platforms (Fig. 9). These are connected by a
GW. A virtual link between virtualization platforms is
logically one link.

In SEP, one can freely decide the parameters (link type,
MAC address, VLAN number, etc.) used for a virtual link
between virtualization platforms, not dependent on imple-
mentation method of the network in each virtualization
platform. In this platform, parameters used in a virtual link
between virtualization platforms are decided by the two
methods described below.

(a)	 Negotiation between GK
	 The GK manages the links of the virtualization

platform. The GK of each virtualization platform
negotiates the parameters through the signal process
that is the common slice’s construction request and

its response. For example, the GK decide a usable
VLAN number, etc.

(b)	Decision by SEP core
	 The SEP core manages the link of the network (SEP

network) that constitutes the virtual link between
virtualization platforms, and sets the parameters
required in the common slice. It also plays the role
of notifying to the virtualization platform that re-
quested the slice composition, sending a notice with
the parameters of the virtualization platform that
receives the slice composition request.

7	 Demonstration experiment

7.1	 Outline
For service allocation, execution and federation, a

demonstration was done at three locations: in Japan, the
U.S. and Europe. Its outline is described here.

Fig.F 9　State transitions of virtual resources (virtual routers and links)

Source Domain Destination Domain

Node GWGW Node

MAC S

VLAN ID

MAC D

Fig.F 10　Overall configuration diagram of an experiment system for federation between three locations: Japan, USA, and Europe

VNode (JGN-X)

ProtoGENI

GK

SEP

GW

Trans Pacific
VLANsControl

Servers
VNode
API

NS

NS

NS

NS

Link Sliver GRE

Europe
AM

AM API

GRE

SEP
core

GK19

GK Utah AM

NS

NS

NS

NS Link Sliver

AM API

Developer (Experimenter)

GK

NS

NS

NS

NS

Link Sliver

USA University of
Utah

VLAN

Japan

Europe

Trans Atlantic
VLANs

emulab-bbg or
Shared VLAN

Shared VLAN

Shared VLAN

Cross-domain
Data Plane

ProtoGENI
VLANs

Common API

jFed

AM API

AM API

Federation
from USA

Common API

Federation
from Europe

Portal

Federation
from Japan

GK: Gate Keeper
SEP: Slice Exchange Point
GW: Gateway

iMinds/Fed4Fire

Title:J2015N-04-04.indd　p51　2016/02/24/ 水 13:06:08

51

4-4 Network Platform Enabling Flexible Services Composition

7.2	 Federation demonstration between three
locations: Japan, USA, and Europe

Figure 10 shows the federation system configuration.
These three virtualization platforms have management
mechanisms that independently construct slices: VNode
virtualization platform (NICT), ProtoGENI virtualization
platform (The University of Utah, USA), and Virtual Wall 2
virtualization platform (iMinds, Belgium). Virtual Wall 2
uses ProtoGENI’s Aggregate Manager-API (AM-API) as its
management mechanism, but in federation from ProtoGENI
using SEP in the direction of Virtual Wall 2 and VNode,
this operation goes from the slice creation and control
commands of ProtoGENI’s AM-API, then passes through
SEP, and again the GK on the Virtual Wall 2 side reconverts
it into an AM-API for Virtual Wall 2.

The control plane is implemented by three GK (one for
each virtualization platform) and the SEP core. The SEP
core and GKs of VNode and ProtoGENI and Virtual Wall 2
are each implemented by a server installed at The University
of Utah.

The SEP core takes a common slice settings (configura-
tion) command requested from one virtualization platform,
sends the command to two virtualization platforms,
merges the reply returned from those two virtualization
platforms, and returns it as one common reply to the
originally requesting virtualization platform.

We confirmed that in the connection environment
shown in Fig. 10, the slice shown in Fig. 11 is configured,
and we can achieve federation between virtualization
platforms with different implementation methods. With
this SEP architecture, by functions to convert commands
and slice definitions, we achieved a single developer inter-
face and independence from the virtualization platform,

and enabled the developer to manage (create, control) the
entire slice the developer created by federation, via the
virtualization platform control functions that the devel-
oper is accustomed to using normally. We thereby demon-
strated that it is possible to configure a slice that exceeds
the limits of resources (virtual routers and links) of one
virtualization platform.

8	 Conclusion

This paper describes a platform that enables the con-
struction of flexible network service systems, in which even
a user with little knowledge of the network can do pro-
gramming by combining previously developed program
modules—like putting toy blocks together.

With the aim of developing a program that is executed
on virtual routers provided by the virtualization platform,
and to support demonstration, this platform provides
programming development in which the protocol pro-
cesses and various functions of the network service system
are made into modules, and the smallest units (blocks)
executable on a virtual router are combined like toy blocks
to boost the productivity of program development by reus-
ing modules.

The demonstration experiment (federation between
Japan/USA/Europe) described in Section 7 was performed
live during the IEICE Technical Committee on Network
Virtualization (March 16–17, 2015 in Koganei, Tokyo), and
at GEC22 held March 23–26, 2015 in Washington, D.C.
This R&D NICT was performed as the NICT contract
“Research and Development of Network Virtualization
Platform Technology to Support the New-Generation
Network, Issue B, Research and Development of a Network

VNode (JGN-X)
VN5 VN1

SP022
SP021

SP023

iMinds/Fed4Fire
(Virtual Wall 2)

SP11
SP12

SP13

ProtoGENI

NS01
NS02

NS03

PVN

Shared VLAN
(gk19-1 / vw-1)

Shared VLAN
(gk19-2/ vw-2)

Node for Federation control

NS: Node Sliver
GW: Gateway
PVN: Pseudo Virtual Node

VNode
GW

USA

Japan

Europe

emulab-bbg
(instageni-nc7)

192.168.191.1

192.168.7.2

192.168.191.11

192.168.192.12

192.168.7.21

192.168.192.22

eth1

eth1

eth1

vlan2941

eth1

vlan301

LS7

LS19

LS719

Fig.F 11　Slice configured between 3 locations: Japan, USA, and Europe

52　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-04-04.indd　p52　2016/02/24/ 水 13:06:08

4 Core Technologies for the New-Generation Network

Platform that Can Create Services,” done jointly by the
Interfaculty Initiative in Information Studies at The
University of Tokyo, NEC Corporation, Hitachi, Ltd., and
KDDI R&D Laboratories Inc.

References
	 1	 Generation Network Promotion Forum, http://forum.nwgn.jp/english/
	 2	 FIND Initiative, http://www.nets-find.net/
	 3	 V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Braynard,.

“Networking Named Content,” Proceeding of ACM CoNEXT’09, pp.1–12, Dec.
2009.

	 4	 Hiroaki Harai, Kenji Fujikawa, Ved P. Kafle, Takaya Miyazawa, Masayuki Murata,
Masaaki Ohnishi, Masataka Ohta, and Takeshi Umezawa, “Design Guidelines
for New Generation Network Architecture,” on Communications, Vol.E93-B,
No.3, pp.462–465, March 2010.

	 5	 http://www.jgn.nict.go.jp/english/index.html
	 6	 GENI (Global Environment for Network Innovations), http://www.geni.net/
	 7	 A. Nakao, “Network Virtualization as Foundation for Enabling New Network

Architectures and Applications,” IEICE Transactions on Communications, Vol.
E93B, Issue 3, pp.454–457, March 2010.

	 8	 N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: Enabling innovation in campus networks”
ACM SIGCOMM Computer Communication Review, Vol.38, Issue 2, pp.69–74,
April 2008.

	 9	 Yamada, “Network KASOUKA KIBAN NI OKERU KASOU Network KANRI
SEIGYO GIJUTSU,” IEICE Technical Committee on Network Virtualization
(NV), Document for the 4th domestic conference, July 2012.(in Japanese)

	10	 http://www.ieice.org/~nv/nv201207-05-yamada.pdf
	11	 N. Hutchinson and L. Peterson, “The x-kernel: An architecture for implement-

ing network protocols,” IEEE Transactions on Software Engineering, Vol.17,
Issue 1, pp.64–76, January 1991.

	12	 Komorita, Ito, Yokota, Makaya, and Falchunk, “ Services Composition based
on Next-Generation Service Overlay Networks Architecture,” MoMuC, Journal
of IEICE Mobile Multimedia Communications Committee, 2011-9, pp.87–92,
Sept. 2011.

	13	 OKAMOTO, MATSUMOTO, KUROKI, MIYAMOTO, OGAKI, and HAYASHI
“Network resource control and management technologies for the federation and
New Generation services,” Technical Report IEICE Technical Report, IN
2012-91, pp.87–91, Oct. 2012 (in Japanese).

Yoshinori KITATSUJI, Ph.D.
Leader, Mobile Network Group, KDDI R&D
Laboratories
Network Architecture, Mobile Network

Title:J2015N-04-04.indd　p53　2016/02/24/ 水 13:06:08

53

4-4 Network Platform Enabling Flexible Services Composition

