
1 Introduction

As exemplified by the term IoT (Internet of Things), 
nearly everything, let alone information devices, and every 
person in modern society is connected to networks for 
exchanging information. Networks do not represent simple 
data transmission paths for data transfer, but assume the 
role of a platform in which various smart services gather, 
analyze and distribute information. As a result, the need 
for new network technologies that allow smooth and effi-
cient connection among the various “information services,” 
quickly responding to the requests for information from 
applications, is growing. These technologies should serve 
as a vehicle to connect a variety of objects—information 
devices, things and people—for transmitting, gathering and 
processing information, with focused consideration given 
to effective utilization of limited network resources. In 
smart cities, for example, the network system at normal 
times provide smart services based on the information 
gathered from various sensor networks (environment, traf-
fic, etc.). In a time of emergency such as a disaster, the 
system is expected to be used in the service of collective 
gathering of damage information for comprehensive analy-
sis, and distributing essential information (evacuation, 
rescue, etc.) to the general public[1]. Up to the present, those 
network technologies (typically VPN) capable of separating 
communication traffic for each application have been used 
for construction of application specific networks. However, 
these are not necessarily suitable for on-demand configura-
tion of the networks that have to change information ser-
vice paths adapting to specific circumstances. The reason 

for this is the fact that existing technologies need up-front 
arbitrations for determining network configuration. In re-
cent years, many attempts have been made actively to de-
velop a platform that operates utilizing the Cloud and 
Software-Defined Networking (SDN)[2][3] in a coordinated 
fashion. These efforts, however, have focused mainly on 
technologies to virtualize networks and computational re-
sources, and resource reallocation required to respond 
correctly to the demands from specific applications is still 
manually controlled by the administrator. However, con-
figuration changes through manual operation have become 
increasingly difficult along with the advent of IoT and the 
explosive increase of information services. New technolo-
gies are needed to interpret the linkage demand among the 
applications correctly for modifying and tuning the net-
work configuration automatically.

To address these demands, we have proposed the 
concept of Service-Controlled Networking (SCN) and im-
plemented it in some middleware applications of our own 
development[4]–[7]. SCN represents a technology that enables 
such network controls as node discovery, path generation, 
data processing and QoS setting, in dynamic response to 
demand from applications for new information service 
linkage. SCN is placed as one of the vehicles to realize the 
concept propounded in data awareness and service aware-
ness of future networks (ITU-T Y3001[8], an international 
standard for new generation networks). In this report, the 
author outlines aspects of SCN including the basic design, 
implementation on a wide area network testbed, develop-
ment of application systems, and future perspectives.
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2 SCN: basic concept

SCN is an approach to mapping the flow of information 
that each application exchanges with various information 
services on a network. Conventionally, networks have been 
configured manually. With the advent of programmable 
networks, typically SDN, dynamic configuration of virtual 
networks by means of software has become a reality. In line 
with this trend, SCN tries to decide the network configura-
tion most appropriate to secure smooth flow of information 
among the applications, and automatically configure pro-
grammable networks dynamically so that information 
flow-driven virtual networks are constructed. To attain this 
goal, SCN consist of the purpose-designed elements shown 
in Fig. 1. The Declarative Service Networking (DSN) is 
composed of a rule language—used to describe declara-
tively the information flows among information services—
and its interpreter. As shown in the example in Fig. 1, the 
flow for collecting and processing data from various infor-
mation services is designed, and, based on this, the applica-
tion is described using DSN. The Network Control 
Protocol Stack (NCPS) searches the nodes that perform 
an information service and creates paths connecting them, 
with the goal of construction and execution of virtual 
networks that allow the application to run the DSN-
described information flow. An instance of NCPS is pro-
vided for each protocol because the way in which a network 
is constructed depends on the network protocol.

The Declarative Networking technology[9] provides the 

basis for SCN. Declarative Networking has its origin in the 
declarative rules used in graph-structured databases and 
the recursive query language Datalog[10]. Network Datalog 
(NDlog[11]) is an extension of Datalog to include functions 
to describe network data flow. Declarative rules and recur-
sive query language—suited for use to express the relation-
ship and correlation constraints between the original and 
derived data—are being actively investigated in the field of 
deductive databases. In NDlog, the network is abstracted 
to provide a field for data exchange, in which the calcula-
tion rules—transition rules form one node state (data 
collection) to another—are described using the network 
protocol. An example of a protocol-based shortest path 
description in NDlog is shown in Fig. 2. This example 
comprises 4 rules, sp1 to sp4. path (Src, Dest, Cost Path) 
indicates the existence of a path, Cost, connecting from the 
node Src to the node Dest. The rules sp1 and sp2 express 
path generating rules: sp1 uses existing inter-node link 
(Src, Dest, Cost) as the path as-is, and sp2 creates a new 
path by combining links adjacent to a path.

Sp3 indicates the rule to identify the minimum cost 
required to route Src to Dest, and sp4 indicates the rule to 
connect paths from Src to Dest at the minimum cost. The 
lower part of Fig. 2 shows the way in which the shortest 
path from each node is calculated through recursive ap-
plication of these rules. The figure shows a path tuple for 
each node that represents a series of paths connecting the 
node to another. The figure “Initially” shows the initial 
state, in which the links to neighboring nodes are shown. 

Fig.F 1　Basic concept of SCN
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Fig.F 2 Examples of shortest path description using Declarative 
Networking (NDlog) (from Reference [9])
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Then, the first iteration (application of the rule sp1) gener-
ates a path tuple corresponding to one hop. In the second 
iteration, application of the rule sp2 creates a path tuple 
corresponding to two hops. Recursive application of these 
steps generates the set of path information, and then, 
subsequent application of rules, sp3 and sp4, calculates the 
shortest path (shortestPath) form one node to another. 
Overlog[12] is an extension language of NDlog for additional 
capability of describing overlay networks: it can create 
virtual nodes and logical links over a physical network. 
Extended capabilities of Overlog over NDlog include such 
functions as message delivery, receipt acknowledgement 
(ACK), failure detection, and timeout, enabling Overlog to 
find applications in P2P[13] and content delivery networks.

SCN attempts to extend the Declarative Network tech-
nology described above, so that it can configure overlay 
networks dynamically in tune with the flow of data ex-
change between information services. Figure 3 shows the 
schematic overview of an SCN-based network configura-
tion. In SCN, the flow of information that comes and goes 
via logical links among the information services running 
on the nodes is described using DSN language, which is 
an extension of Overlog. When the DSN descriptions are 
put into a run, information services are mapped onto the 
node by NCPS, followed by setting paths between the 
nodes for data transfer among the information services. 
Then, the data processing specified to the information flow 
are executed on one of the nodes along the route (in-net-
work data processing). During this process, reconfiguration 
of paths and in-network processing is continuously an 
option to avoid congestion and delay of data transfer. It 
can be triggered in response to the ever-changing situations 
in the network environment—through careful monitoring 
of traffic and node loading. 

These capabilities provided by SCN enable application 
developers to ensure network resources elastically for 
continuous and stable operation of the 

application irrespective of the changes that may occur in 
the information flow between the information services. 
These characteristics free the developer from worries about 
acquiring network resources preemptively in preparation 
for the arrival of peak loading. They also provide beneficial 
effect to the network providers: dynamic and automatic 
reallocation of resources in response to real-world situa-
tions enables providing space for a larger number of ap-
plications within the scope of limited network resources, 
leading to a higher level of utilization ratio than in the 
conventional networks that require contract-based alloca-
tion of network resources.

3 Related research

As one of the technologies that can provide software 
control of networks, SDN has received attention in recent 
years. SDN allows programs to configure network path 
settings using APIs. For this purpose, various domain-
specific programming languages have been proposed aim-
ing at upgrading efficiency in network control. These 
programming languages, such as Frenetic[14], NetCore[15], 
NICE[16], and Nettle[17] aim at developing network func-
tions—routing, topology discovery, etc.—on OpenFlow, a 
typical implementation of SDN. One of the main objectives 
of these languages is to support the development of pro-
grams to modify path settings (flow table) in tune with 
OpenFlow’s switch status, wherein focus is placed on the 
functions to run simulations and hunt bugs using the 
programs that run within a closed OpenFlow network. On 
the other hand, Procera[18] is designed to describe the rules 
for flow control by responding to the events taking place 
in other nodes than OpenFlow switches: e.g. user authen-
tication, time and day, utilization ratio of the band, and 
server load. This mechanism enables the language to control 
the network in compliance with the application’s adminis-
tration policies. As described above, there are many 
methods to control SDN at various levels. Among them, 
the SCN approach is characterized by its ability to describe 
the flows of information for each application using the 
DSN language (a Declarative Networking-based language) 
and automatically configure the network that runs those 
flows of information on an SDN implementation (e.g. 
OpenFlow). It is also capable of automatic reconfiguration 
during the application’s run-time if any congestion or delay 
takes place in the network. With such capabilities, SCN can 
be considered to provide strengthened coordination be-
tween applications and network controls compared to 
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Fig.F 3　Dynamic configuration of a network using SCN
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conventional SDN control technologies.
Different from conventional terminal ID (e.g. IP ad-

dress) based technologies, Information-Centric Networking 
(ICN[19]) (or Content-Centric Networking[20]) uses the IDs 
of information contents (typically the content name) as the 
key to control networks. In ICN, the content ID and its 
network address are registered, and ICN resolves the name 
for data transfer in response to a “push”/“get” of the content 
ID from the application. This approach enables the applica-
tions to exchange content IDs without the need to take 
heed of the network configuration, as well as the network 
administrators to rearrange network resources more elasti-
cally. SCN has a mechanism, as with other methods, to 
separate information flow from the network configuration 
by means of DSN and NCPS, which enables dynamic 
discovery of correspondence between information services 
and nodes. In addition, SCN steps up its control capability 
into distributed processing of contents, which involves 
dynamic path settings among information services and 
intra-network data processing based on the information 
flow described in DSN.

4 SCN: Design and implementation

SCN has been implemented and introduced as middle-
ware that runs on the nodes of the network targeted for 
dynamic configuration. Coordinated operation of these 
actually executes SCN functions. The information services 
targeted for coordination through SCN are those provided 
by existing systems and Web services. They are wrapped 
using a common interface before registering to SCN with 
service metadata. The data exchanged among these services 
is also transformed into the common format (AMON de 
facto standard[21]) by the wrapper. The next section de-
scribes the process of actualizing SCN functions in the 
execution environment.

4.1 Declarative Service Networking
DSN descriptions are implemented based on Bloom[22][23], 

which in turn is an implementation of the Overlog lan-
guage. Bloom is a domain specific language embedded in 
the code of the general-purpose programming language 
Ruby, for the objective of describing data flows using 
production rules. For use in DSN, Bloom is further ex-
tended to allow construction of information flows that 
links services more efficiently (functions shown in Table 1 
are implemented).

An example of descriptions in DSN (an excerpt) is 
shown in Fig. 4. This program monitors rainfall data, and 
if higher than specified precipitation (deluging rain) is 
detected, it gathers additional sensing data from the sur-
rounding area indicative of the extent of the damage caused 
by the rain—e.g. meteorological, traffic data, and social 
media reporting. Major rules composing the program are 
as follows:
① state section declares the information services used 

in DSN. @xxxxx represents the service name, and 
the discover function performs service discovery.

② scratch_xxxxx represents an output from or input 
to the service, and channel_xxxxx represents the 
channel used for inter-service data transfer. “<~” 
designates a data transmission from the right mem-
ber to the left. For example, “scratch_evwh <~chan-
nel_panda” indicates a data transfer to scratch_evwh 
(I/O of @evwh service) through channel_panda 
(data transfer channel connecting @panda service 
and @evwh service). The data sent out from 
scratch_panda is filtered when it passes through 
channel_panda by the filter function with filtering 
conditions given as an argument.

③ event_xxxxx represents an event that occurs when 
the transferred data satisfies certain conditions, and 
the trigger function generates an event if it detects 

Name Synopsis Example
discover Service discovery @jma_rainfall: discover (category=sensor, type=rain)
filter Data filtering channel_datastore <~ filter (scratch_panda, average_rainfall > 25.0)
cull_time, 
cull_space

Data thinning at specified 
time/position intervals

channel_datastore <~ cull_time (scratch_panda, 1, 2, time (time, "2015 /01 /01 
T00:00:00", "2015/03/20 T23:59:59", 30, "second"))

aggregate
Aggregation of multiple 
data into one

channel_name1 <~ aggregate (scratch_panda, aggregate_data, time (time, 
"2015/01/01 T00:00:00 ", "2015/03/20 T23:59:59", 15, "second"), space (latitude, 
longitude, -12.34, -5.67, 34.56, 78.9, 0.1, 0.3))

trigger Event detection
event_heavyrain <+ trigger (channel_datastore, 30, count > 130, average_rainfall > 
25.0)

TableT 1　DSN functions
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the condition indicated by its argument.
④ event_xxxxxon do section is run only when the 

corresponding event takes place.
The DSN description interpreter performs the following 

tasks: (1) execution of the rules specified by the DSN de-
scriptions, (2) data transmission/reception between the 
services, and (3) invokes NCPS functions.

The DSN interpreter is implemented based on the 
distributed data flow execution engine of the Bloom lan-
guage (Bud), and the data transmission/reception between 
the rule execution and a service, described above, is carried 
out by the Bud. The DSN functions (extension of Bloom) 
are implemented as Ruby subroutines within which Bloom 
code is embedded, and are used to invoke NCPS functions 
via external libraries. For example, the discover function 
uses the argument to create a query for service search, 
which invokes the node discovery function provided by 
NCPS. Other data processing functions also invoke, in 
similar fashion, NCPSs corresponding to intra-network 
data processing functions.

4.2 Network Control Protocol Stack
To achieve DSN-based dynamic configuration of over-

lay networks, NCPS has implemented three functions: node 
discovery, path creation and intra-network data processing. 
In the node discovery function, NCPS searches services 
that meet specified conditions, followed by identification 
of execution nodes. Namely, this function consists of two 
processes: service search and node lookup. The service 

search performs search by query in reference to the given 
metadata that describes service attributes—e.g. type and 
name of the service, input/output data format, and others. 
For example, if the given query contains “type=rain,” a 
search is made to locate a service that provides precipita-
tion data.

The node lookup function registers a combination of 
service ID and node ID (normally the IP address) to NCPS, 
and creates a hash table using the service ID as the key. In 
node discovery, the service search is performed to find 
service metadata that fits the given query, followed by a 
node lookup process to locate the node using the service 
ID obtained from the metadata. By combining two dis-
similar processes as described above, a higher level of 
flexibility is attained in service search: applications can 
issue various queries, and node lookups can be accelerated 
even in the case of frequent reallocation of services to the 
nodes.

In addition, by adopting distributed hash-based node 
lookup[24], enhanced scalability can be realized as the net-
work is scaled up.

The path creation function discovers the shortest path 
routing the nodes on which services are executed. In this 
route discovery process, the network is represented as a 
weighted directional graph, in which the weight is deter-
mined based on traffic and node loading. Even after a path 
is created, monitoring on the traffic amount between the 
service nodes continues: if the traffic amount fails to fulfill 
the throughput conditions placed on the DSN channel, a 

Fig.F 4　An example of information flow descriptions using DSN
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trigger is generated inside NCPS for path recalculation. 
Because this approach requires path setting and traffic 
statistics acquisition for each overlay network, the process 
has to be performed for each protocol running on the 
target network. In the case of OpenFlow, the path informa-
tion is written to the flow table of OpenFlow controller, 
and the flow IDs enable unified management of OpenFlow 
switch connections under its control. The OpenFlow con-
troller monitors and tallies the OpenFlow switch traffics 
for each flow ID for calculating statistics using the Stats 
Request/Replay function (standard equipment of OpenFlow).

To achieve efficient data exchange abiding by the infor-
mation flow specified by DSN while using the path created 
as described above, the network has provisions for execut-
ing DSN data processing functions (filter, cull, aggregate, 
trigger) on the nodes along the route inside the network. 
NCPS monitors each node’s load information, and deter-
mines a node on the route on which the processing should 
be carried out.

5 Application of SCN

To exemplify the effect of SCN on network control, an 
experiment was carried out to compare data exchange 
performance in two cases: one with SCN, and one without 
it. Several applications, each known to exhibit different 
throughput for different services, were used in the experi-
ment. They were run in sequence with time for observing 
how each application throughput changes. An experimental 
OpenFlow network was constructed on the network testbed 
StarBED[25], on which 6 OpenFlow switches were connected 
in full mesh configuration using 10 Mbps lines. All of the 
switches were placed under control of an OpenFlow 
controller. 

Two nodes (service nodes), on which the information 
service runs, were connected to each OpenFlow switch. 
Both OpenFlow switch and OpenFlow controller were 
software implementations: the former executes Open 
vSwitch[26] and the latter NOX[27] software on a server run-
ning Linux OS (Ubuntu). Specifications for each node are 
shown in Table 2.

Figure 5 shows the results of the experiment. The verti-
cal axis represents throughput, and the horizontal axis 
indicates elapse of time. Each polygonal line corresponds 
to throughput changes of each application: the longer the 
horizontal segments, the better the stability of data trans-
mission/reception under the required throughput condi-
tions. The system with SCN in operation, the 

applications—each executed in sequence—maintained stable 
performance even though traffic amount changes from one 
throughput level to another. In contrast, the system without 
SCN showed heavy fluctuations in throughput starting 
from a certain point in time, indicating that the application 
fell into an unstable state. The results can be explained by 
the SCN’s working wherein it switches the path dynami-
cally to avoid network congestion, and to maintain each 
application’s throughput among the service nodes (i.e. 
end-to-end throughput), clearly indicating the beneficial 

CPU Memory OS

OpenFlow
controller

Xeon
2.668 GHz

× 4
2,048 Mbytes

Ubuntu
11.10

OpenFlow
switch

Xeon
2.668 GHz

× 1
8,192 Mbytes

Service
node

Xeon
2.668 GHz

× 1

8,192 Mbytes

TableT 2　Configuration of experiment node

SCN Enabled

SCN Disabled

Fig.F 5　Results of throughput comparison experiment
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effect for sustaining stability in many application systems 
than the system without SCN running on the network 
under best-effort control.

To take advantage of the effects SCN can provide—i.e. 
dynamic configuration of networks enables stable and 
sustainable execution of information flow—a sensing data 
collection/analysis platform was developed on the sensor 
network testbed JOSE (Japan-wide Orchestrated Smart/
Sensor Environment)[28]. The objective of the platform is to 
gather heterogeneous sensing data collectively from various 
information sources (sensors, social media, etc.) to cope 
with events and emergencies that occur in an unexpected 
fashion.

JOSE is a testbed to actively utilize observation data 
gathered from a multitude of sensors deployed in wide 
area, using distributed computer systems located in many 
sites each connected with high-speed networks. The testbed 
consists of a large-scale network (customizable), server 
facilities and wireless sensor facilities. SCN can operate on 
JOSE to automatically configure application-specific sensor 
data gathering networks. Figure 6 shows how a specific 
application (that shown in Fig. 4) actually operates on the 
testbed and gathers information. The figure shows two 
visualized 3D renditions—geometrical space (plane) and 
time (vertical) axis—of the various data collected by the 
application: the left with SCN implemented, and the right 
without it. In the center of both figures, precipitation data 

when very heavy rainfall (≧25mm/hr) was observed is 
shown. Along with it, additional data (meteorological, 
traffic and social media) are displayed on the same frame. 
The small window on the lower left of Fig. 6 presents a 
visualized rendition of SCN operational status: it enables 
real-time monitoring of the network being dynamically and 
automatically reconfigured by NCPS in response to the 
events specified by the trigger function of DSN—e.g. heavy 
rain event, delay in data transfer, and others. Comparison 
of sensor data gathering performance in these two cases—
one with SCN and the other without it—indicates that the 
system without SCN implementation (right figure) tends 
to collect all the data from around the country independent 
of the precipitation sensor readings. The system using SCN 
(left figure), on the other hand, starts intensive data gather-
ing from the affected area when it acknowledges the oc-
currence of heavy precipitation (signal from DSN functions 
such as trigger). Thanks to SCN, no susceptible delay in 
real-time data gathering was observed because SCN ensures 
elastic reallocation of network resources at the time of the 
event for maintaining throughput. In contrast, the system 
without SCN is prone to suffer from network congestion 
because it gathers data around the country at all times. In 
addition, once congestion takes place, the system will take 
longer to recover the original throughput level (see Fig. 5) 
because it is a best-effort network, often resulting in a large 
delay in data gathering.

Fig.F 6　Performance examples of applications run on the sensing data collection/analysis platform
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6 Future perspective

With the development of IoT, strong growth of such 
applications is expected that provide various types of net-
work links among the information services provided by 
various agents including objects, people and information 
devices. In line with this trend, certain types of technolo-
gies seem to move to the forefront: typically those, includ-
ing SCN, dynamically configure networks in response to 
the changes in information flows among the services. To 
cope with this trend, SCN needs further upgrade in scal-
ability. Major challenges that SCN should address in the 
future include: establishment of a common service inter-
face, standardization of DSN descriptions, effective map-
ping and dynamic control of information flows and network 
configurations through machine learning and other 
methods, and, discovery and tracking of services that are 
running on mobile nodes. SCN-related technologies are 
under active development for wider applications, in rela-
tion to social ICT, in view of utilizing cross-cutting partici-
patory sensing to address environmental issues both at 
normal times and in emergency. The direction of research, 
in the future, should be geared toward constructing the 
framework for effective IoT data utilization.
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