
1 Introduction

As exemplified by the term IoT (Internet of Things),
nearly everything, let alone information devices, and every
person in modern society is connected to networks for
exchanging information. Networks do not represent simple
data transmission paths for data transfer, but assume the
role of a platform in which various smart services gather,
analyze and distribute information. As a result, the need
for new network technologies that allow smooth and effi-
cient connection among the various “information services,”
quickly responding to the requests for information from
applications, is growing. These technologies should serve
as a vehicle to connect a variety of objects—information
devices, things and people—for transmitting, gathering and
processing information, with focused consideration given
to effective utilization of limited network resources. In
smart cities, for example, the network system at normal
times provide smart services based on the information
gathered from various sensor networks (environment, traf-
fic, etc.). In a time of emergency such as a disaster, the
system is expected to be used in the service of collective
gathering of damage information for comprehensive analy-
sis, and distributing essential information (evacuation,
rescue, etc.) to the general public[1]. Up to the present, those
network technologies (typically VPN) capable of separating
communication traffic for each application have been used
for construction of application specific networks. However,
these are not necessarily suitable for on-demand configura-
tion of the networks that have to change information ser-
vice paths adapting to specific circumstances. The reason

for this is the fact that existing technologies need up-front
arbitrations for determining network configuration. In re-
cent years, many attempts have been made actively to de-
velop a platform that operates utilizing the Cloud and
Software-Defined Networking (SDN)[2][3] in a coordinated
fashion. These efforts, however, have focused mainly on
technologies to virtualize networks and computational re-
sources, and resource reallocation required to respond
correctly to the demands from specific applications is still
manually controlled by the administrator. However, con-
figuration changes through manual operation have become
increasingly difficult along with the advent of IoT and the
explosive increase of information services. New technolo-
gies are needed to interpret the linkage demand among the
applications correctly for modifying and tuning the net-
work configuration automatically.

To address these demands, we have proposed the
concept of Service-Controlled Networking (SCN) and im-
plemented it in some middleware applications of our own
development[4]–[7]. SCN represents a technology that enables
such network controls as node discovery, path generation,
data processing and QoS setting, in dynamic response to
demand from applications for new information service
linkage. SCN is placed as one of the vehicles to realize the
concept propounded in data awareness and service aware-
ness of future networks (ITU-T Y3001[8], an international
standard for new generation networks). In this report, the
author outlines aspects of SCN including the basic design,
implementation on a wide area network testbed, develop-
ment of application systems, and future perspectives.

Service-Controlled Networking

Koji ZETTSU

Recent advances of IoT technologies has witnessed the dynamic changes of network from
conventional data transportation to a collaboration filed of information services provided by
information objects, devices and humans. We first propose a novel concept named Service-
Controlled Networking (SCN), a network middleware which is capable to dynamically process data
fusion at in-network level over a programmable network like Software Defined Networking. In
this paper, we introduce our recent research effort and elaborate how we try to overcome these
challenges with a large scale testbed environment. We then verify the usefulness by extensive
experiment evaluation. Last, we discuss the future direction of SCN.

Title:J2015N-07-05.indd　p177　2016/02/23/ 火 21:10:12

177

7 Very Large-scale Information Sharing Network Technologies

2 SCN: basic concept

SCN is an approach to mapping the flow of information
that each application exchanges with various information
services on a network. Conventionally, networks have been
configured manually. With the advent of programmable
networks, typically SDN, dynamic configuration of virtual
networks by means of software has become a reality. In line
with this trend, SCN tries to decide the network configura-
tion most appropriate to secure smooth flow of information
among the applications, and automatically configure pro-
grammable networks dynamically so that information
flow-driven virtual networks are constructed. To attain this
goal, SCN consist of the purpose-designed elements shown
in Fig. 1. The Declarative Service Networking (DSN) is
composed of a rule language—used to describe declara-
tively the information flows among information services—
and its interpreter. As shown in the example in Fig. 1, the
flow for collecting and processing data from various infor-
mation services is designed, and, based on this, the applica-
tion is described using DSN. The Network Control
Protocol Stack (NCPS) searches the nodes that perform
an information service and creates paths connecting them,
with the goal of construction and execution of virtual
networks that allow the application to run the DSN-
described information flow. An instance of NCPS is pro-
vided for each protocol because the way in which a network
is constructed depends on the network protocol.

The Declarative Networking technology[9] provides the

basis for SCN. Declarative Networking has its origin in the
declarative rules used in graph-structured databases and
the recursive query language Datalog[10]. Network Datalog
(NDlog[11]) is an extension of Datalog to include functions
to describe network data flow. Declarative rules and recur-
sive query language—suited for use to express the relation-
ship and correlation constraints between the original and
derived data—are being actively investigated in the field of
deductive databases. In NDlog, the network is abstracted
to provide a field for data exchange, in which the calcula-
tion rules—transition rules form one node state (data
collection) to another—are described using the network
protocol. An example of a protocol-based shortest path
description in NDlog is shown in Fig. 2. This example
comprises 4 rules, sp1 to sp4. path (Src, Dest, Cost Path)
indicates the existence of a path, Cost, connecting from the
node Src to the node Dest. The rules sp1 and sp2 express
path generating rules: sp1 uses existing inter-node link
(Src, Dest, Cost) as the path as-is, and sp2 creates a new
path by combining links adjacent to a path.

Sp3 indicates the rule to identify the minimum cost
required to route Src to Dest, and sp4 indicates the rule to
connect paths from Src to Dest at the minimum cost. The
lower part of Fig. 2 shows the way in which the shortest
path from each node is calculated through recursive ap-
plication of these rules. The figure shows a path tuple for
each node that represents a series of paths connecting the
node to another. The figure “Initially” shows the initial
state, in which the links to neighboring nodes are shown.

Fig.F 1　Basic concept of SCN

Node
discovery

Path
creation

In-network
data processing

QoS
setting

Translation

Network function calls

Declarative Service Networking(DSN)

Network Control Protocol Stack (NCPS)

Declarative description of information flow

Precipitation
Sensor

SNS

Data
integration

Filtering

Anomaly
detection

Weather
Sensor Filtering

Fig.F 2 Examples of shortest path description using Declarative
Networking (NDlog) (from Reference [9])

178　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-07-05.indd　p178　2016/02/23/ 火 21:10:12

7 Very Large-scale Information Sharing Network Technologies

Then, the first iteration (application of the rule sp1) gener-
ates a path tuple corresponding to one hop. In the second
iteration, application of the rule sp2 creates a path tuple
corresponding to two hops. Recursive application of these
steps generates the set of path information, and then,
subsequent application of rules, sp3 and sp4, calculates the
shortest path (shortestPath) form one node to another.
Overlog[12] is an extension language of NDlog for additional
capability of describing overlay networks: it can create
virtual nodes and logical links over a physical network.
Extended capabilities of Overlog over NDlog include such
functions as message delivery, receipt acknowledgement
(ACK), failure detection, and timeout, enabling Overlog to
find applications in P2P[13] and content delivery networks.

SCN attempts to extend the Declarative Network tech-
nology described above, so that it can configure overlay
networks dynamically in tune with the flow of data ex-
change between information services. Figure 3 shows the
schematic overview of an SCN-based network configura-
tion. In SCN, the flow of information that comes and goes
via logical links among the information services running
on the nodes is described using DSN language, which is
an extension of Overlog. When the DSN descriptions are
put into a run, information services are mapped onto the
node by NCPS, followed by setting paths between the
nodes for data transfer among the information services.
Then, the data processing specified to the information flow
are executed on one of the nodes along the route (in-net-
work data processing). During this process, reconfiguration
of paths and in-network processing is continuously an
option to avoid congestion and delay of data transfer. It
can be triggered in response to the ever-changing situations
in the network environment—through careful monitoring
of traffic and node loading.

These capabilities provided by SCN enable application
developers to ensure network resources elastically for
continuous and stable operation of the

application irrespective of the changes that may occur in
the information flow between the information services.
These characteristics free the developer from worries about
acquiring network resources preemptively in preparation
for the arrival of peak loading. They also provide beneficial
effect to the network providers: dynamic and automatic
reallocation of resources in response to real-world situa-
tions enables providing space for a larger number of ap-
plications within the scope of limited network resources,
leading to a higher level of utilization ratio than in the
conventional networks that require contract-based alloca-
tion of network resources.

3 Related research

As one of the technologies that can provide software
control of networks, SDN has received attention in recent
years. SDN allows programs to configure network path
settings using APIs. For this purpose, various domain-
specific programming languages have been proposed aim-
ing at upgrading efficiency in network control. These
programming languages, such as Frenetic[14], NetCore[15],
NICE[16], and Nettle[17] aim at developing network func-
tions—routing, topology discovery, etc.—on OpenFlow, a
typical implementation of SDN. One of the main objectives
of these languages is to support the development of pro-
grams to modify path settings (flow table) in tune with
OpenFlow’s switch status, wherein focus is placed on the
functions to run simulations and hunt bugs using the
programs that run within a closed OpenFlow network. On
the other hand, Procera[18] is designed to describe the rules
for flow control by responding to the events taking place
in other nodes than OpenFlow switches: e.g. user authen-
tication, time and day, utilization ratio of the band, and
server load. This mechanism enables the language to control
the network in compliance with the application’s adminis-
tration policies. As described above, there are many
methods to control SDN at various levels. Among them,
the SCN approach is characterized by its ability to describe
the flows of information for each application using the
DSN language (a Declarative Networking-based language)
and automatically configure the network that runs those
flows of information on an SDN implementation (e.g.
OpenFlow). It is also capable of automatic reconfiguration
during the application’s run-time if any congestion or delay
takes place in the network. With such capabilities, SCN can
be considered to provide strengthened coordination be-
tween applications and network controls compared to

Overlay Network

NCPS

Information Flow

• Node discovery
• Path creation
• In‐network

data processing

DSN
Information service

Node

Data processing

Fig.F 3　Dynamic configuration of a network using SCN

Title:J2015N-07-05.indd　p179　2016/02/23/ 火 21:10:12

179

7-5 Service-Controlled Networking

conventional SDN control technologies.
Different from conventional terminal ID (e.g. IP ad-

dress) based technologies, Information-Centric Networking
(ICN[19]) (or Content-Centric Networking[20]) uses the IDs
of information contents (typically the content name) as the
key to control networks. In ICN, the content ID and its
network address are registered, and ICN resolves the name
for data transfer in response to a “push”/“get” of the content
ID from the application. This approach enables the applica-
tions to exchange content IDs without the need to take
heed of the network configuration, as well as the network
administrators to rearrange network resources more elasti-
cally. SCN has a mechanism, as with other methods, to
separate information flow from the network configuration
by means of DSN and NCPS, which enables dynamic
discovery of correspondence between information services
and nodes. In addition, SCN steps up its control capability
into distributed processing of contents, which involves
dynamic path settings among information services and
intra-network data processing based on the information
flow described in DSN.

4 SCN: Design and implementation

SCN has been implemented and introduced as middle-
ware that runs on the nodes of the network targeted for
dynamic configuration. Coordinated operation of these
actually executes SCN functions. The information services
targeted for coordination through SCN are those provided
by existing systems and Web services. They are wrapped
using a common interface before registering to SCN with
service metadata. The data exchanged among these services
is also transformed into the common format (AMON de
facto standard[21]) by the wrapper. The next section de-
scribes the process of actualizing SCN functions in the
execution environment.

4.1 Declarative Service Networking
DSN descriptions are implemented based on Bloom[22][23],

which in turn is an implementation of the Overlog lan-
guage. Bloom is a domain specific language embedded in
the code of the general-purpose programming language
Ruby, for the objective of describing data flows using
production rules. For use in DSN, Bloom is further ex-
tended to allow construction of information flows that
links services more efficiently (functions shown in Table 1
are implemented).

An example of descriptions in DSN (an excerpt) is
shown in Fig. 4. This program monitors rainfall data, and
if higher than specified precipitation (deluging rain) is
detected, it gathers additional sensing data from the sur-
rounding area indicative of the extent of the damage caused
by the rain—e.g. meteorological, traffic data, and social
media reporting. Major rules composing the program are
as follows:
① state section declares the information services used

in DSN. @xxxxx represents the service name, and
the discover function performs service discovery.

② scratch_xxxxx represents an output from or input
to the service, and channel_xxxxx represents the
channel used for inter-service data transfer. “<~”
designates a data transmission from the right mem-
ber to the left. For example, “scratch_evwh <~chan-
nel_panda” indicates a data transfer to scratch_evwh
(I/O of @evwh service) through channel_panda
(data transfer channel connecting @panda service
and @evwh service). The data sent out from
scratch_panda is filtered when it passes through
channel_panda by the filter function with filtering
conditions given as an argument.

③ event_xxxxx represents an event that occurs when
the transferred data satisfies certain conditions, and
the trigger function generates an event if it detects

Name Synopsis Example
discover Service discovery @jma_rainfall: discover (category=sensor, type=rain)
filter Data filtering channel_datastore <~ filter (scratch_panda, average_rainfall > 25.0)
cull_time,
cull_space

Data thinning at specified
time/position intervals

channel_datastore <~ cull_time (scratch_panda, 1, 2, time (time, "2015 /01 /01
T00:00:00", "2015/03/20 T23:59:59", 30, "second"))

aggregate
Aggregation of multiple
data into one

channel_name1 <~ aggregate (scratch_panda, aggregate_data, time (time,
"2015/01/01 T00:00:00 ", "2015/03/20 T23:59:59", 15, "second"), space (latitude,
longitude, -12.34, -5.67, 34.56, 78.9, 0.1, 0.3))

trigger Event detection
event_heavyrain <+ trigger (channel_datastore, 30, count > 130, average_rainfall >
25.0)

TableT 1　DSN functions

180　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-07-05.indd　p180　2016/02/23/ 火 21:10:12

7 Very Large-scale Information Sharing Network Technologies

the condition indicated by its argument.
④ event_xxxxxon do section is run only when the

corresponding event takes place.
The DSN description interpreter performs the following

tasks: (1) execution of the rules specified by the DSN de-
scriptions, (2) data transmission/reception between the
services, and (3) invokes NCPS functions.

The DSN interpreter is implemented based on the
distributed data flow execution engine of the Bloom lan-
guage (Bud), and the data transmission/reception between
the rule execution and a service, described above, is carried
out by the Bud. The DSN functions (extension of Bloom)
are implemented as Ruby subroutines within which Bloom
code is embedded, and are used to invoke NCPS functions
via external libraries. For example, the discover function
uses the argument to create a query for service search,
which invokes the node discovery function provided by
NCPS. Other data processing functions also invoke, in
similar fashion, NCPSs corresponding to intra-network
data processing functions.

4.2 Network Control Protocol Stack
To achieve DSN-based dynamic configuration of over-

lay networks, NCPS has implemented three functions: node
discovery, path creation and intra-network data processing.
In the node discovery function, NCPS searches services
that meet specified conditions, followed by identification
of execution nodes. Namely, this function consists of two
processes: service search and node lookup. The service

search performs search by query in reference to the given
metadata that describes service attributes—e.g. type and
name of the service, input/output data format, and others.
For example, if the given query contains “type=rain,” a
search is made to locate a service that provides precipita-
tion data.

The node lookup function registers a combination of
service ID and node ID (normally the IP address) to NCPS,
and creates a hash table using the service ID as the key. In
node discovery, the service search is performed to find
service metadata that fits the given query, followed by a
node lookup process to locate the node using the service
ID obtained from the metadata. By combining two dis-
similar processes as described above, a higher level of
flexibility is attained in service search: applications can
issue various queries, and node lookups can be accelerated
even in the case of frequent reallocation of services to the
nodes.

In addition, by adopting distributed hash-based node
lookup[24], enhanced scalability can be realized as the net-
work is scaled up.

The path creation function discovers the shortest path
routing the nodes on which services are executed. In this
route discovery process, the network is represented as a
weighted directional graph, in which the weight is deter-
mined based on traffic and node loading. Even after a path
is created, monitoring on the traffic amount between the
service nodes continues: if the traffic amount fails to fulfill
the throughput conditions placed on the DSN channel, a

Fig.F 4　An example of information flow descriptions using DSN

Event Data
Warehouse

Precipitation
Sensor

(PANDA)

Filter

Trigger

Weather
Sensor

Traffic
Sensor

Twitter
Sensor

Filter

Filter

Filter

state
@panda : discover(type=rain)
@jmarain: discover(type=weather)
@twitter: discover(type=twitter)
@traffic: discover(type=traffic)
@evwh: discover(type=datastore)

end

bloom do
scratch_evwh <~ channel_panda
channel_panda <~ filter(scratch_panda,

avg_rainfall >= 25)

event_heavyrain <+ trigger(channel_panda, 30,
count > 130, avg_rainfall >= 25)

event_heavyrain.on do
scratch_evwh <~ filter(scratch_jmarain, rain >= 5)
scratch_evwh <~ filter(scratch_twitter,

text like “rain")
scratch_evwh <~ filter(scratch_traffic

warming >=1)
end

end

= data processingproc

DSN Description (excerption)

(1)

(1) Sensor discovery

(2) Precipitation
data collection

(2)

(3)

(3) Heavy rain
event detection

(4) Additional data
collection

(4)

Discover

Title:J2015N-07-05.indd　p181　2016/02/23/ 火 21:10:12

181

7-5 Service-Controlled Networking

trigger is generated inside NCPS for path recalculation.
Because this approach requires path setting and traffic
statistics acquisition for each overlay network, the process
has to be performed for each protocol running on the
target network. In the case of OpenFlow, the path informa-
tion is written to the flow table of OpenFlow controller,
and the flow IDs enable unified management of OpenFlow
switch connections under its control. The OpenFlow con-
troller monitors and tallies the OpenFlow switch traffics
for each flow ID for calculating statistics using the Stats
Request/Replay function (standard equipment of OpenFlow).

To achieve efficient data exchange abiding by the infor-
mation flow specified by DSN while using the path created
as described above, the network has provisions for execut-
ing DSN data processing functions (filter, cull, aggregate,
trigger) on the nodes along the route inside the network.
NCPS monitors each node’s load information, and deter-
mines a node on the route on which the processing should
be carried out.

5 Application of SCN

To exemplify the effect of SCN on network control, an
experiment was carried out to compare data exchange
performance in two cases: one with SCN, and one without
it. Several applications, each known to exhibit different
throughput for different services, were used in the experi-
ment. They were run in sequence with time for observing
how each application throughput changes. An experimental
OpenFlow network was constructed on the network testbed
StarBED[25], on which 6 OpenFlow switches were connected
in full mesh configuration using 10 Mbps lines. All of the
switches were placed under control of an OpenFlow
controller.

Two nodes (service nodes), on which the information
service runs, were connected to each OpenFlow switch.
Both OpenFlow switch and OpenFlow controller were
software implementations: the former executes Open
vSwitch[26] and the latter NOX[27] software on a server run-
ning Linux OS (Ubuntu). Specifications for each node are
shown in Table 2.

Figure 5 shows the results of the experiment. The verti-
cal axis represents throughput, and the horizontal axis
indicates elapse of time. Each polygonal line corresponds
to throughput changes of each application: the longer the
horizontal segments, the better the stability of data trans-
mission/reception under the required throughput condi-
tions. The system with SCN in operation, the

applications—each executed in sequence—maintained stable
performance even though traffic amount changes from one
throughput level to another. In contrast, the system without
SCN showed heavy fluctuations in throughput starting
from a certain point in time, indicating that the application
fell into an unstable state. The results can be explained by
the SCN’s working wherein it switches the path dynami-
cally to avoid network congestion, and to maintain each
application’s throughput among the service nodes (i.e.
end-to-end throughput), clearly indicating the beneficial

CPU Memory OS

OpenFlow
controller

Xeon
2.668 GHz

× 4
2,048 Mbytes

Ubuntu
11.10

OpenFlow
switch

Xeon
2.668 GHz

× 1
8,192 Mbytes

Service
node

Xeon
2.668 GHz

× 1

8,192 Mbytes

TableT 2　Configuration of experiment node

SCN Enabled

SCN Disabled

Fig.F 5　Results of throughput comparison experiment

182　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-07-05.indd　p182　2016/02/23/ 火 21:10:12

7 Very Large-scale Information Sharing Network Technologies

effect for sustaining stability in many application systems
than the system without SCN running on the network
under best-effort control.

To take advantage of the effects SCN can provide—i.e.
dynamic configuration of networks enables stable and
sustainable execution of information flow—a sensing data
collection/analysis platform was developed on the sensor
network testbed JOSE (Japan-wide Orchestrated Smart/
Sensor Environment)[28]. The objective of the platform is to
gather heterogeneous sensing data collectively from various
information sources (sensors, social media, etc.) to cope
with events and emergencies that occur in an unexpected
fashion.

JOSE is a testbed to actively utilize observation data
gathered from a multitude of sensors deployed in wide
area, using distributed computer systems located in many
sites each connected with high-speed networks. The testbed
consists of a large-scale network (customizable), server
facilities and wireless sensor facilities. SCN can operate on
JOSE to automatically configure application-specific sensor
data gathering networks. Figure 6 shows how a specific
application (that shown in Fig. 4) actually operates on the
testbed and gathers information. The figure shows two
visualized 3D renditions—geometrical space (plane) and
time (vertical) axis—of the various data collected by the
application: the left with SCN implemented, and the right
without it. In the center of both figures, precipitation data

when very heavy rainfall (≧25mm/hr) was observed is
shown. Along with it, additional data (meteorological,
traffic and social media) are displayed on the same frame.
The small window on the lower left of Fig. 6 presents a
visualized rendition of SCN operational status: it enables
real-time monitoring of the network being dynamically and
automatically reconfigured by NCPS in response to the
events specified by the trigger function of DSN—e.g. heavy
rain event, delay in data transfer, and others. Comparison
of sensor data gathering performance in these two cases—
one with SCN and the other without it—indicates that the
system without SCN implementation (right figure) tends
to collect all the data from around the country independent
of the precipitation sensor readings. The system using SCN
(left figure), on the other hand, starts intensive data gather-
ing from the affected area when it acknowledges the oc-
currence of heavy precipitation (signal from DSN functions
such as trigger). Thanks to SCN, no susceptible delay in
real-time data gathering was observed because SCN ensures
elastic reallocation of network resources at the time of the
event for maintaining throughput. In contrast, the system
without SCN is prone to suffer from network congestion
because it gathers data around the country at all times. In
addition, once congestion takes place, the system will take
longer to recover the original throughput level (see Fig. 5)
because it is a best-effort network, often resulting in a large
delay in data gathering.

Fig.F 6　Performance examples of applications run on the sensing data collection/analysis platform

SCN Enabled SCN Disabled

Time

Geo-
space

Title:J2015N-07-05.indd　p183　2016/02/23/ 火 21:10:12

183

7-5 Service-Controlled Networking

6 Future perspective

With the development of IoT, strong growth of such
applications is expected that provide various types of net-
work links among the information services provided by
various agents including objects, people and information
devices. In line with this trend, certain types of technolo-
gies seem to move to the forefront: typically those, includ-
ing SCN, dynamically configure networks in response to
the changes in information flows among the services. To
cope with this trend, SCN needs further upgrade in scal-
ability. Major challenges that SCN should address in the
future include: establishment of a common service inter-
face, standardization of DSN descriptions, effective map-
ping and dynamic control of information flows and network
configurations through machine learning and other
methods, and, discovery and tracking of services that are
running on mobile nodes. SCN-related technologies are
under active development for wider applications, in rela-
tion to social ICT, in view of utilizing cross-cutting partici-
patory sensing to address environmental issues both at
normal times and in emergency. The direction of research,
in the future, should be geared toward constructing the
framework for effective IoT data utilization.

References
 1 Presser M., Vestergaard L., and Ganea S. “Smart City Use Cases and

Requirements,” D2.1, FP7-SMARTCITIES-2013, available at http://www.ict-
citypulse.eu/page/sites/default/files/citypulse_d2.1_requirements_v1.0_0.pdf

 2 OpenDaylight, http://www.opendaylight.org/
 3 Numhauser, B.-M., et al., “Fog Computing Introduction to a New Cloud

Evolution. Escrituras silenciadas” paisaje como historiografía. Spain: University
of Alcala. pp.111–126. ISBN 978-84-15595-84-7, 2013.

 4 Toyomura T., Kimata T., Kim K.-S., and Zettsu K., “Towards Information
Service-Controlled Networking,” Proceedings of the 5th International Universal
Communication Symposium (IUCS2011), pp.155–163, Oct. 2011.

 5 Kimata, T., Toyomura, T., Kim, K.-S., and Zettsu, K.: Dynamic Configuration
of Network Flow based on Service-Controlled Networking, IEICE Technical
Report SC, Vol.112, No.77, pp.7–12, June 2012.

 6 Kimata, T., Sugiura, K., Dong, M., and Zettsu, K.: Service-Controlled
Networking: A Dynamic Network Control Method based on Application
Structure and User Request, The 6th Forum on Data Engineering and
Information Management (DEIM2014), C9-3, March 2014.

 7 Dong M., Kimata T., and Zettsu K., “Service-Controlled Networking,” Dynamic
In-Network Data Fusion for Heterogeneous Sensor Networks, Proceedings of
the 33rd IEEE International Symposium on Reliable Distributed Systems
Workshops (SRDSW), Nara, Japan, pp.94–99, Oct. 2014.

 8 Future networks “Objectives and design goals,” ITU-T Y.3001, May, 2011.
 9 Loo B. T., et. al.: Declarative Networking, Communications of the ACM, Vol.52

No.11, pp.87–95, Nov. 2009.
 10 Ramakrishnan R. and Ullman J.D., “A Survey of Research on Deductive

Database Systems. Journal of Logic Programming,” Vol.23, No.2, pp.125–149,
1993.

 11 Nigam V., Jia L., Wang A., Loo B. T., and Scedrov A., “An Operational Semantics

for Network Datalog,” Proceedings of the Third International Workshop on
Logics, Agents, and Mobility (LAM), July 2010.

 12 Loo B.T., Condie T., Hellerstein J.M., Maniatis P., Roscoe T., and Stoica I.,
“Implementing declarative overlays,” Proceedings of ACM Symposium on
Operating Systems Principles, 2005.

 13 P2, “Declarative Networking System” http://p2.cs.berkeley.edu.
 14 Foster N., et. al., “Frenetic: A Network Programming Language,” Proceedings

of the 16th ACM SIGPLAN international conference on Functional program-
ming (ICFP ‘11), pp.279–291, 2011.

 15 Monsanto C., Foster N., Harrison R., and Walker D., “A Compiler and Run-time
System for Network Programming Languages,” Proceedings of ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL),
pp.217–230, Jan. 2012.

 16 Canini M., Venzano D., Peres P., Kostic D, and Rexford J., “A NICE Way to
Test OpenFlow Applications,” Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation (NSDI’12), pp.127–140, 2012.

 17 Voellmy A. and Hudak P., “Nettle: Functional Reactive Programming for
OpenFlow Networks,” Proceedings of the Workshop on Practical Aspects of
Declarative Languages pp.235–249, 2011.

 18 Voellmy A., Kim H., and Feamster N., “Procera: A Language for High-Level
Reactive Network Control,” Proceedings of the First Workshop on Hot Topics
in Software Defined Networks (HOTSDN’12), pp.43–48, 2012.

 19 Ahlgren B., Dannewitz C., Imbrenda C., Kutscher D.,and Ohlman B., “A Survey
of Information-Centric Networking, IEEE Communications Magazine,” Vol.50,
No.7, pp.26–36, July 2012.

 20 Jacobson V., et. al., “Networking Named Content,” Proceedings of the 5th
International Conference on Emerging Networking Experiments and
Technologies (CoNEXT ‘09), pp.1–12, 2009.

 21 AMON data format, http://amee.github.io/AMON/ .
 22 BOOM, http://boom.cs.berkeley.edu/
 23 Alvaro P., Conway N., Hellerstein J. M., and Marczak W. R., “Consistency

Analysis in Bloom: a CALM and Collected Approach,” Proceedings of the 5th
Conference on Innovative Data Systems Research (CIDR ’11), pp.249–260,
2011.

 24 Stoica I. et. al., “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” ACM SIGCOMM Computer Communication Review, Vol.31,
No.4, pp.149–160, 2001.

 25 StarBED, http://starbed.nict.go.jp/
 26 Open vSwitch, http://openvswitch.org/, accessed at June 2015.
 27 NOX OpenFlow Controller, http://www.noxrepo.org/, accessed at June 2015.
 28 Japan-wide Orchestrated Smart/Sensor Environment (JOSE), http://www.nict.

go.jp/nrh/nwgn/jose.html .

Koji ZETTSU, Ph.D.
Director of Information Services Platform
Laboratory, Universal Communication
Research Institute/Research Manager, New
Generation Network Laboratory, Network
Research Headquarters
Data Engineering, Database System,
Information Retrieval

184　　　Journal of the National Institute of Information and Communications Technology Vol. 62 No. 2 (2015)

Title:J2015N-07-05.indd　p184　2016/02/23/ 火 21:10:12

7 Very Large-scale Information Sharing Network Technologies

