
1 Introduction

Analysis of network traffic constitutes the foundation
technology of network security. Many network security
applications — such as intruder detection system (IDS),
firewall, and network forensics — use certain techniques
of network traffic analysis as their core technology. The
analysis of network traffic requires a mechanism to obtain
essential chunks of information (IP packet, Ethernet frame,
and others) from the network flow. Candidate techniques
that can fill the needs include the BSD Packet Filter (BPF)
[1] used in the BSD systems, PF_PACKET [2] used in
Linux, and the libpcap [3] which is a wrapper library of
the former two tools. However, it has become increasingly
apparent that conventional simple techniques, typically the
traffic capture mechanism provided by the libpcap library,
fall short of the requirements to cope with the highly so-
phisticated cyberattacks (e.g. targeted attack [4]) and traffic
analysis of the networks with ever increasing bandwidth.
To address this situation, the author is conducting research
and development on the infrastructure technology for
analyzing network traffic that should be flexible enough to
accommodate machine-learning based advanced analysis
algorithms that are capable of handling wideband networks.

In concrete terms, the research and development is
focused on the development of SF-TAP (Scalable and
Flexible Traffic Analysis Platform) — a software infrastruc-
ture for network traffic analysis at the application levels.
The SF-TAP provides the following five features to realize
easy and efficient network traffic analysis: 1) flow abstrac-

tion mechanism, 2) modularity, 3) core scale design, 4)
horizontal scale architecture, and 5) operation capability
on commodity devices.

The architecture and design concept of SF-TAP, as well
as performance evaluation, have already been published
elsewhere [5]. This report focuses on more practical aspects
of SF-TAP, including the specific designs and internal im-
plementation, as well as the description of application
cases.

2 Design

This section describes the design of the SF-TAP, and
how scalability and flow abstraction capabilities are imple-
mented in it.

2.1 Design overview
Figure 1 illustrates the operation concept of the SF-TAP.

The SF-TAP consists of two components — SF-TAP Cell
Incubator and SF-TAP Flow Analyzer — and an entity
consisting of the combination of these two is called a SF-
TAP Cell. The SF-TAP Cell Incubator is a component to
realize horizontal scale, which captures traffic flowing in
intra-networks and externally connected networks, then
divides it into chunks on a flow unit basis, followed by
transfer to multiple SF-TAP Cells. Conventionally, it has
been considered difficult to transfer 10 Gbps network traf-
fic at the wire-rate speed using commodity hardware. The
author has successfully realized this high-speed transfer
utilizing the netmap [6]. The SF-TAP Flow Abstractor is a

4-5 SF-TAP: Scalable and Flexible Traffic Analysis Platform

Yuuki TAKANO

Application-level network traffic analysis is a fundamental technology, which could be widely
adopted such as intrusion detection system. However, network traffic analysis algorithms
consuming considerable computational resources can not be adopted by using conventional
network capturing technologies. In addition, developing an application protocol analyzer is a
tedious and time consuming task. Therefore, in this paper, we propose a scalable and exible traffic
analysis platform (SF-TAP) that provides an efficient and exible application-level stream analysis
of high-bandwidth network traffic. Because SF-TAP is horizontally scalable, such heavy algorithms
can be adopted for high-bandwidth networks. Furthermore, because of the modularity of SF-TAP,
developers can easily implement network traffic analyzers by using SF-TAP.

Title:J2016S-04-05.indd　p103　2017/03/15/ 水 09:14:10

103

4 Cyber-Security Technologies: Live Network Monitoring and Analysis Technologies

component used to realize core scaling: it receives a flow
from the SF-TAP Cell Incubator and reconstructs it before
transferring it to multiple SF-TAP Flow Analyzers. In this
way, SF-TAP is designed to guarantee multilayered scal-
ability. This design allows flexible rescaling of hardware
configuration in response to the trend of the computa-
tional load, leading to more efficient utilization of compu-
tational resources.

Figure 2 illustrates the architecture of the SF-TAP. ST-

TAP’s architecture consists of four Planes: Capture Plane,
Separate Plane, Abstractor Plane, and Analyzer Plane. The
following paragraphs describe the role played by each
Plane.

The Abstractor Plane classifies and abstracts the flow.
This plane performs such operations as IP fragment reas-
sembly, flow identification, TCP stream reassembly, and
identification of the application protocol using regular
expression, before it sends the flow to an appropriate ab-
stracted interface. The user of this platform can construct
an analyzer using the abstract interfaces provided by the
plane.

The Analyzer Plane, which includes the analyzer con-
structed by the platform user as its component, carries out
an analysis of the application’s protocol.

The Capture Plane plays the role of capturing network
traffic. To be more specific, it corresponds to such mecha-
nisms as the port mirroring of the L2/L3 switch and SSL
proxy.

The Separate Plane is used to analyze wideband network
traffic. This plane transfers the traffic that has been captured
by its constituting component — i.e. SF-TAP Cell Incubator
— to multiple SF-TAP Cells based on the flow information.

Among the four planes, this report gives only a brief
mention to the Capture Plane, because it assumes the use
of well-known mechanisms such as L2/L3 mirroring. Also,
detailed discussion is not given to the Analyzer Plane, as
it assumes implementation by the user of this platform.

Thus, the following sections place focus on the descrip-
tion of the SF-TAP Flow Abstractor and SF-TAP Cell
Incubator, both of which are the core components of the
SF-TAP.

Fig.F 2　Detailed architecture of the SF-TAP

NW I/F

HTTP I/F

TLS I/F
Flow Abstractor

Flow
Classifier TLS Analyzer

HTTP Analyzer

HTTP Proxy

TCP and UDP
Handler

filter and
classifier
rule

L7 Loopback I/F

DB
Forensic
IDS/IPS
etc...

Application
Protocol Analyzer

etc...TCP Default I/F

UDP Default I/F

Analyzer PlaneAbstractor Plane

Capturer
Plane

SF-TAP Cell
Incubator

Flow
Identifier

Flow
Separator

Separator
Plane

separated traffic

SF-TAP Cell

L3/L7 Sniffer

SSL
Proxy
etc...

other SF-TAP cells

IP Packet
Defragmenter

L2 Bridge

mirroring
trafficPacket Forwarder

IP Fragment
Handler

Fig.F 1　SF-TP’s operation scheme

CPU CPU CPU CPU

Flow Abstractor

CPU CPU CPU CPU

Flow Abstractor

CPU CPU CPU CPU

Flow Abstractor

CPU CPU CPU CPU

Flow Abstractor

Cell Incubator

The Internet

SF-TAP Cell SF-TAP Cell SF-TAP Cell SF-TAP Cell

Intra Network

Core ScalingCore Scaling Core Scaling Core Scaling

Horizontal Scaling

Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer Analyzer

10GbE 10GbE

104　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-04-05.indd　p104　2017/03/15/ 水 09:14:10

4 Cyber-Security Technologies: Live Network Monitoring and Analysis Technologies

2.2 SF-TAP Cell Incubator
The SF-TAP Cell Incubator performs L2 bridging, mir-

roring of wideband traffic, and load balancing on a flow
unit basis. As shown in Fig. 2, the SF-TAP Cell Incubator
architecture consists of the Packet Forwarder, IP Fragment
Handler, and Flow Separator. The Packet Forwarder re-
ceives a L2 frame and transfers it to other NICs or IP
Fragment Handlers. The IP Fragment Handler is a compo-
nent used to divide a flow, whereby an IP fragment is
taken into consideration. It appropriately performs flow
identification (both fragmented and unfragmented packets)
and transfer the L2 frame to a Flow Separator. Based on
the flow information, the Flow Separator, in turn, transfers
it to plural SF-TAP Cells.

Open vSwitch [7] [8] is one of the software tools ca-
pable of controlling traffic on a flow unit basis, but its
ovf-ctrl is unable to handle an IP packet properly if it is
fragmented. There are other software tools, such as iptables
[9] and pf [10], which can perform traffic control using a
L4 header, but they are also weak in terms of fragment
handling. In addition, these software tools described above
tend to exhibit performance problems when dealing with
wideband traffic.

2.3 SF-TAP Flow Abstractor
The SF-TAP Flow Abstractor is a component used to

perform such operations as reassembly of IP fragment
packets, allocation of flow ID and classification of flow
protocols, and it provides abstract flow interfaces to traffic
analysis applications. As shown in Fig. 2, the SF-TAP Flow
Abstractor is a multicomponent tool consisting of an IP
Packet Defragmenter, Flow Identifier, TCP and UDP
Hander, and Flow Classifier. The IP Packet Defragmenter
reassembles IP fragment packets, and the TCP and UDP
Handler reassembles TCP packets. Note that the TCP and

UDP Handler transfers UDP packets to the Flow Classifier
intact (UDP packets do not need any reassembly). The Flow
Identifier identifies a flow based on the IP address, port
number and Hop count (the number of re-injections into
SF-TAP Flow Abstractor), and assign an ID to the flow. The
flow ID generated by the Flow Identifier is used in subse-
quent operations such as reassembling TCP and in multi-
thread processing of the flow.

The SF-TAP performs file based abstraction: a common
approach with Plan 9 [11], BPF, and /dev of UNIX systems.
Figure 3 illustrates the directory structure of the abstracted
flow interface provided by the SF-TAP Abstractor. The
flows, after being reassembled and having their IDs identi-
fied, are classified based on protocols and finally output to
one of the files (UNIX Domain Socket) as shown in the
figure. Analysis applications have to connect to these files
to read in the flow to be analyzed. Note that the loopback7
is a specialized interface for analyzing tunneling protocols,
such as Proxy, and used solely for re-injection. The default
interface is used as the common output destination for all
the flows that defy identification by the Flow Classifier.

As shown in Fig. 3, more than one interface is available
to the HTTP protocol (http [0‒3]). The purpose of this
configuration is to enable load balancing of the HTTP
flows and running analyzers on multiple CPUs. For ex-
ample, CPU resources can be more efficiently utilized if
four processes are simultaneously activated on a HTTP
analyzer and each of them is connected to a different HTTP
interface.

3 Implementation

Figure 4 shows the main classes and functions con-
tained in the SF-TAP Flow Abstractor, as well as mutual
relations among the threads. Based on the figure, this

Fig.F 3　The directory structure of abstract flow interface

$ l s −R /tmp/ s f−tap
loopback7= tcp / udp/

/tmp/ s f−tap/ tcp :
d e f au l t= http0= ssh= dns=
smtp= http1= f tp= http proxy=
t o r r e n t t r a c k e r= http2= i r c= websocket=
s s l= http3=

/tmp/ s f−tap/udp :
d e f au l t= dns= to r r en t dh t=

Title:J2016S-04-05.indd　p105　2017/03/15/ 水 09:14:10

105

 4-5 S4-TAP: Scacaale cand Saleexaale -TcaaxS Tacalyxy AacaafTrm

section describes how the SF-TAP Flow Abstractor is imple-
mented.

3.1 Main classes of SF-TAP Flow Abstractor
The SF-TAP Flow Abstractor is constructed following

the object-oriented concept, and implemented using C++
language. Thus, all the functions and variables are imple-
mented as an object through the use of the classes. The
following are the main classes contained in the ST-TAP
Flow Abstractor.

fabs_pcap　�Captures Ethernet frames using pcap.
fabs_netmap　Captures Ethernet frames using netmp.
fabs_ether　Transfers the captured Ethernet frame to an
appropriate function.

fabs_fragment　Reassembles IPv4’s IP fragment pack-
ets.
fabs_udp　Processes UDP packet related jobs.
fabs_tcp　Processes TCP packet related jobs.
fabs_appif　Processes UNIX Domain Socket related jobs.
fabs_id　Manages flow IDs.
fabs_id_dir　A fabs_id class with additional flow direction
information.

The classes fabs_pcap and fabs_netmap capture Ethernet
frames using pcap and netmap, respectively. The Ethernet
frame captured by either of these classes is handed over to
the ether_input function that belongs to the fabs_ether
class. When the Ethernet frame is transferred to the
fabs_ether class its IP packet is extracted from the frame,
followed by examination if it is an instance of a frag-
mented IPv4 packet. If it is, the packet is transferred to
input_ip function (fabs_fragment class). If it is not an in-
stance of an IPv4 packet, and if it is either a UDP or TCP
packet, it is transferred to the fabs_udp or fabs_tcp class
through the operator() function (fabs_callback class).

The fabs_udp class transfers the packet to the fabs_ap-
pif class without performing any modification. The fabs_tcp
class performs the same operation, but with TCP flow reas-
sembly before the transfer. The fabs_appif class identifies
the application protocol used in the received packet, and
controls (listen/accept/close) the UNIX Domain Socket
including data input/output. Regular expressions — regular
expression library re2 [12] — are used to identify the ap-
plication protocol, and matching determination was made
using the fabs_appif:appif_consumer class (i.e. in_datagram
or send_tcp_data function). Following the identification
procedure of the application protocol, the data is output to

an appropriate Unix Domain Socket. Data output to UNIX
Domain Socket starts with the header, followed by the
payload. Header output. The write_head function (fabs_ap-
pif class) carries out the header output. Payload output is
carried out by two functions: the in_datagram function for
UDP, and the send_tcp_data function for TCP.

Two classes, fabs_id and fabs_id_dir, are provided to
control flow Ids. The fabs_id class is used to uniquely
identify the stream, and the fabs_id_dir class holds, in
addition to the fabs_id information, the directional infor-
mation (upstream/downstream) in the stream. The SF-TAP
Flow Abstractor executes flow control based on the infor-
mation provided by these flow ID control classes.

3.2 Threads of SF-TAP Flow Abstractor
This section describes thread handlings performed by

the SF-TAP Flow Abstractor. The basic approach taken by
the SF-TAP Flow Abstractor to utilize threads relies on the
producer-consumer pattern. Bottlenecks in multithread
programming often come from synchronization process-
ing: if inadequately implemented, it can cause drastically
reduced system performance and plague the system with
hordes of multithread-related bugs (e.g. deadlock). However,
use of producer-consumer patterns can reduce the amount
of data shared among threads, simplifying synchronization
processing.

The SF-TAP Flow Abstractor contains a low-level,
spinlock based, synchronization mechanism independently
which makes use of atomic operations. The reason for this
implementation is to address the generation of function-
call overhead (typically such function as pthread_mutex),
as well as the possibility of transfer of the thread process-
ing to the OS’s scheduler. Handover of thread processing
to the OS’s scheduler gives rise to a context switching,
which is highly likely to generate a large delay in synchro-
nizing among the threads. To avoid this, an independent
synchronization mechanism is implemented. Low-level
synchronization processing is realized by two classes:
fabs_spin_lock class and fabs_spin_rwlock class. The
fabs_spin_lock class contains simple spin-lock functions,
and the fabs_spin_rwlock class contains readers-writer lock
functions.

The SF-TAP Flow Abstractor uses, as shown in Fig. 4,
the following five types of threads: Capture thread, IP
Defragment thread, TCP/UDP thread, UX thread, and
Classification thread. The Capture thread captures Ethernet
frames using pcap or netmap. The IP Defragment thread
reassembles fragmented packets of IPv4. The TCP/UDP

106　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-04-05.indd　p106　2017/03/15/ 水 09:14:10

4 Cyber-Security Technologies: Live Network Monitoring and Analysis Technologies

thread performs various processing related to TCP and
UDP. The UX thread performs UNIX Domain Socket re-
lated processing such as listen, accept, and close. The
Classification thread identifies the protocol used in applica-
tions and outputs data to UNIX Domain Socket.

4 Application cases

Up till now, the SF-TAP has been applied to investiga-
tive researches on DNS Open Resolver and third-party web
tracking. This section gives a description of these applica-
tion cases.

4.1 Investigative survey on actual situations in
which DNS open resolver is used

The DNS amp attack [13] [14] is a mode of DDoS attack

strategies frequently reported from the year around 2013,
which is characterized by the technique that exploits DNS
servers (DNS open-resolver) that respond to the requests
from unspecified multiple people. Because there are many
DNS open-resolvers distributed on the Internet, the at-
tacker tries to invade by sending a falsified DNS query (the
source IP address is masquerading as the IP address of the
attack target) to a DNS open-resolver. The author con-
ducted wide-area investigation on the DNS open-resolvers
that may serve as the cause for DNS amp attacks [15]–[17].
Figure 5 shows global distribution of DNS open-resolvers
plotted on a world map. The investigation revealed that, as
is apparent from this figure, numerous DNS open-resolvers
are distributed worldwide.

To research into the distribution of DNS open-servers
on the internet, use was made of a system consisting of the

Fig.F 4　Implementations of SF-TAP Flow Abstractor

libpcap

fabs_pcap::pcap_callback()

fabs_callback::operator()

fabs_tcp::input_tcp()fabs_udp::input_udp()

fabs_tcp::run()

fabs_appif::appif_consumer::in_stream_event()

fabs_appif::write_head() fabs_appif::appif_consumer::send_tcp_data()

fabs_udp::run()

fabs_appif::appif_consumer::in_datagram()

fabs_appif::in_event()

producer

consumer

fabs_appif::ux_read()

fabs_appif::read_loopback7()

L7 loopback I/F

L7 Protocol I/Fs

fabs_appif::appif_consumer::producer()

fabs_appif::appif_consumer::consume()

Capture Thread

UX Thread
TCP/UDP Thread

Classification Threads

producer
consumer

fabs_ether::consume()fabs_ether::consume_fragment()

fabs_fragment::input_ip()

fabs_fragment::defragment()

IP Defragment Thread

consumer

fabs_ether::produce()
producer

netmap

fabs_netmap::rx_in()

fabs_ether::ether_input()

Title:J2016S-04-05.indd　p107　2017/03/15/ 水 09:14:10

107

 4-5 S4-TAP: Scacaale cand Saleexaale -TcaaxS Tacalyxy AacaafTrm

following three components: a DNS Prober that explores
DNS open-resolvers on the Internet, a Reverse Lookupper
that traces back the data from the DNS Prober to locate
the DNS open-resolver, and a Statistical Analyzer to obtain
statistical information. A prototype version of the SF-TAP
software was used, embedded in the DNS Prober and
Reverse Lookupper, as the DNS packet analysis engine. As
exemplified in this investigation, application of an appro-
priate traffic analysis mechanism makes the measurement
and analysis of DNS servers much easier.

The results of this research have been cited as a refer-
ence in several papers [18]–[20]. Especially noteworthy for
those interested in this field is the paper written by Kührer
et.al. and presented in ACM IMC 2015 (the flagship confer-
ence in Internet measurement), which, in addition to the
approach the author employed, carried out more detailed
investigation including the device fingerprint of DNS open-
resolvers.

4.2 Investigative research on third-party web
tracking

Promotional websites and social networking sites usu-
ally scrape personal web browsing history secretly. This
activity — called third-party web tracking — has become
subject of debate as it may constitutes a serious breach of
privacy [21] [22]. By the nature of this activity, many uses
are suffering privacy breach without noticing it. Many
users use these sites, especially social networking sites, by
their real names, providing an easy link between their real

names and web browsing history. The author is conducting
research and development aiming at realization of informed
consent in web advertising. The term “informed consent”,
normally used in health-care field, means here that the user
browses websites only based on a clear understanding and
consent concerning what part of his/her private informa-
tion may be transferred to the website.

The MindYourPrivacy [23] is a system of the author’s
own development for the visualization of third-party web
tracking. It first analyzes HTTP traffic using a prototype
implementation of the SF-TAP, and then stores the data in
MongoDB [24]. Then, it analyzes the stored data to create
a visual presentation of third-party web tracking for the
user. Figure 6 shows an illustrative result obtained from
this system (a result from the demonstrative experiment
presented in the WIDE training camp – a meeting of
network researchers).

In this study, the author also proposed a method to
extract — through clustering of the graph — the sites that
are actually performing third-party web tracking. The re-
sults of MCODE [25]-based clustering are shown in the
lower part of Fig. 6, The MindYourPrivacy stores the results
of network traffic analysis in MongoDB for subsequent
batched data processing. Visualization processing, as shown
in Fig. 6, was performed manually using Cytoscape [26].
CHAKRA is an attempt to automatically carry out big data
analysis on an online basis up to the point of visual pre-
sentation, i.e. a big data player with visualization capabil-
ity. Figure 7 shows an example of graph visualized by

Fig.F 5　�Global distribution of DNS open-resolvers (as of Jul. 2013)

108　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-04-05.indd　p108　2017/03/15/ 水 09:14:10

4 Cyber-Security Technologies: Live Network Monitoring and Analysis Technologies

CHAKRA. CHAKRA employs SF-TAP as the network
traffic analysis tool, and draws graphics using an algorithm
in which a spring model is applied on Riemann manifold
[27]. A demonstrative exhibition of SF-TAP and CHAKRA
was staged in Interop Tokyo 2015, the largest business show
in Japan in the field of networking, where the SF-TAP was

awarded the grand-prix in the science section and CHAKRA
was award a special prize in the demonstration section of
ShowNet.

5 Related researches

Traditional packet capture and analysis software tools,
such as tcpdump [3] and WireShark [28], are still in wide
use. The libnids [29] is a library for analyzing network
traffic that can be used not only to capture packets but also
to reassemble TCP flow. These tools operate basically on a
single thread and are therefore unfit for the analysis of
wideband traffic.

Tools capable of flow-level analysis of wideband traffic
have also been proposed — i.e. SCAP [30] and GASPP [31]
— and they proved the feasibility of realizing flow-level
analysis of 10 Gbps traffic on commodity hardware. The
SCAP works within Linux kernel, and is implemented with
an acceleration mechanism — i.e. thread allocation to
NIC’s transmission and receive queue. It comes with an-
other mechanism, called Subzero-Copy Packet Transfer,
which makes it possible to analyze only the required traffic
selectively. GASPP is an analysis engine that implement its
functions through the use of GPGPU: the use of netmap
[6] enables fast memory-to-memory transfer between NIC
and GPU. The approach proposed by the author is similar
to GASPP in view of its attempt to accelerate flow level
analysis, but major differences exist in such aspects as:
considerations on the scalability of flow analysis section,

Fig.F 6　Data presented in WIDE training camp (Sept. 2013)

Fig.F 7　CHAKRA: a big data visualization system

Title:J2016S-04-05.indd　p109　2017/03/15/ 水 09:14:10

109

 4-5 S4-TAP: Scacaale cand Saleexaale -TcaaxS Tacalyxy AacaafTrm

and equipment of common interface for easy realization of
modularity.

Several types of high-speed packet capture frameworks
have been proposed, i.e. netmap, DPDK [32], and PF_RING
[33]. Conventional methods normally involve a prolifera-
tion of copying operations and interrupts in the transac-
tions among NIC, kernel, and the user, which make
capturing in wideband traffic quite difficult. One of the
objectives of the proposed methods is to reduce the fre-
quency of memory copy operations and interrupts drasti-
cally, making packet capturing at a 10 Gbps wire-rate a
possibility. The author’s implementation uses netmap for
capturing network traffic.

Several software tools, such as nDPI [34], libprotoident
[35], l7 –filter [36], and PEAFLOW [37], have been pro-
posed to classify traffic at application levels. To identify the
protocol used in the applications, these tools use either the
Aho-Corasik [38] method or the regular expression pattern
matching. PEAFLOW uses the parallel programing lan-
guage FastFlow to realize fast traffic classification.

The IDS software packages, such as Snort [39], bro [40],
and Suricata [41], perform flow reassembly and analysis at
the application level. One of them, bro, uses a protocol
server language binpac [42] to enable analysis at the ap-
plication level. However, because Snort and bro operate on
a single thread, they are unfit for the analysis of wideband
traffic. On the other hand, Suricata is operable on multi-
thread and capable of handling wider band traffic. One of
the characteristics inherent to these packages is the close
coupling between functions, typically the sections for flow
reassembly and analysis at the application level. This hin-
ders flexible modification of operation logics, and these
packages tend to be bound to the rule description method
and domain specific language provided by the software.

Schneider et al. [43] proposed an architecture to scale
out through flow unit basis division of 10 Gbps traffic.
Note, however, that they only demonstrated the validity of
the method on 1 Gbps traffic, and the feasibility on 10 Gbps
traffic still remains at a conceptual stage. SF-TAP, on the
other hand, is implemented with the software to divide
10 Gbps traffic on a flow unit basis and its functionality
has been verified.

Click [44], SwitchBlade [45] and ServerSwitch [46] have
been conducting researches to modularize network
switches, thus enabling this function to be deployed on the
network in a highly flexible and programmable fashion.
Based on their approach, the configuration of analysis
logic in the SF-TAP is also modularized to incorporate

programmability in analysis procedures.
BPF [1] is a well-known mechanism for capturing

packets which abstracts network traffic using a method
similar to the UNIX’s /dev. In the SF-TAP, the concept used
in BPF is further extended to enable traffic abstraction at
flow levels. This also supports modularization of analysis
logic and core scaling.

6 Conclusion

In this report, the author gave an explanation on the
SF-TAP, a flexible and highly scalable infrastructure for
network traffic analysis. With the use of the SF-TAP, net-
work traffic analysis at application levels becomes much
easier than the conventional network traffic capturing
techniques: for example, the technique that uses libpcap.
Typically, the conventional techniques present difficulties
in applying a sophisticated analysis method such as ma-
chine learning. This favorable feature owes much to the
modularity- and scalability-oriented design of the SF-TAP.

The SF-TAP consists of two main components: SF-TAP
Cell Incubator and ST-TAP Flow Abstractor. The SF-TAP
Cell Incubator is a mechanism that enables two or more
machines to analyze network traffic, thus it supports the
realization of system scalability. The SF-TAP Flow Abstractor
assumes the role of flow abstraction, whereby the file-based
abstraction - which is also utilized in such tools as UNIX’s
/dev, BFP, and Plan 9 - is used. This abstraction procedure
enables the realization of modularity and effective utiliza-
tion of multiple CPU cores.

This report also describes how the SF-TAP Flow
Abstractor is implemented. In terms of session layer pro-
tocols, the current SF-TAP Flow Abstractor is capable of
handling only TCP and UDP. If it is to handle other pro-
tocols, such as QUIC in the future, the implementation
method described in this report will serve as a useful refer-
ence. This is also true for addressing additional data frame
link capturing mechanisms such as DPDK in the future:
the current SF-TAP is capable of using only libpcap and
netmap.

This report also gives some of illustrative applications
of the SF-TAP. So far, the SF-TAP has been effectively
utilized in such investigative researches as those on DNS
open resolver and third-party web tracking. As the nature
of these cases indicate, the methods used to analyze net-
work traffic represent the infrastructure technology to
maintain network security, and they are of critical impor-
tance in implementing algorithmic research and develop-

110　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-04-05.indd　p110　2017/03/15/ 水 09:14:10

4 Cyber-Security Technologies: Live Network Monitoring and Analysis Technologies

ment in important subjects such as IDS. The author is
planning to continue SF-TAP based research and develop-
ment placing stronger focus on utility in the real world.
The target areas include IDS, network traffic engineering,
and network forensics.

ReReRenReR
 1 Steven McCanne and Van Jacobson, “The BSD Packet Filter: A New Architecture

for User-level Packet Capture” In Proceedings of the Usenix Winter 1993
Technical Conference, San Diego, Cali-fornia, USA, January 1993, pp.259–270.
USENIX Association, 1993.

 2 PF PACKET. https://www.kernel.org/doc/Documentation/networking/filter.txt.
 3 TCPDUMP/LIBPCAP public repository. http://www.tcpdump.org/.
 4 Olivier Thonnard, Leyla Bilge, Gavin O’Gorman, Se_an Kiernan, and

Martin Lee, “Industrial Espi-onage and Targeted Attacks: Understanding the
Characteristics of an Escalating Threat” In Davide Balzarotti, Salvatore J. Stolfo,
and Marco Cova, editors, Research in Attacks, Intrusions, and De-fenses - 15th
International Symposium, RAID 2012, Amsterdam, The Netherlands, Sept.
12–14, 2012. Proceedings, vol.7462 of Lecture Notes in Computer Science,
pp.64–85. Springer, 2012.

 5 Yuuki Takano, Ryosuke Miura, Shingo Yasuda, Kunio Akashi, and Tomoya Inoue,
“SF-TAP: Scalable and Flexible Traffic Analysis Platform Running on
Commodity Hardware” In 29th Large Installa-tion System Administration
Conference (LISA15), pp.25–36, Washington, D.C., November 2015. USENIX
Association.

 6 Luigi Rizzo and Matteo Landi, “netmap: memory mapped access to network
devices” In Srinivasan Keshav, Jörg Liebeherr, John W. Byers, and
Jeffrey C. Mogul, editors, SIGCOMM, pp.422–423. ACM, 2011.

 7 Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith
Amidon, and Martin Casado, “The Design and Implementation of Open
vSwitch” In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pp.117–130, Oakland, CA, May 2015. USENIX
Association.

 8 Open vSwitch. http://openvswitch.github.io/.
 9 net_lter/iptables project homepage - The net_lter.org “iptables” project. http://

www.netfilter.org/projects/iptables/.
 10 PF: The OpenBSD Packet Filter. http://www.openbsd.org/faq/pf/.
 11 Rob Pike, David L. Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,

Howard Trickey, and Phil Winterbottom, “Plan 9 from Bell Labs” Computing
Systems, vol.8, no.2, pp. 221–254, 1995.

 12 RE2. https://github.com/google/re2.
 13 Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos,

Georgios Louloudakis, and Stefanos Gritzalis, “DNS ampli_cation attack revis-
ited” Computers & Security, vol.39, pp.475–485, 2013.

 14 US-CERT Alert(TA13-088A) DNS Ampli_cation Attacks. http://www.us-cert.
gov/ncas/alerts/TA13-088A.

 15 Ruo Ando, Yuuki Takano, and Satoshi Uda, “Unraveling large scale geographi-
cal distribution of vulnerable DNS servers using asynchronous I/O mechanism”,
2013.

 16 Yuuki Takano, Ruo Ando, Takeshi Takahashi, Satoshi Uda, and Tomoya Inoue,
“A measurement study of open resolvers and DNS server version” In Internet
Conference 2013, pp.23–32, 2013.

 17 Yuuki Takano, Ruo Ando, Takeshi Takahashi, Satoshi Uda, and Tomoya Inoue,
“The Ecology of DNS Open Resolvers” IEICE Transaction, Vol.J97-B, No.10,
pp.873–889, 2014.

 18 Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and
Thorsten Holz, “Going Wild: Large-Scale Classi_cation of Open DNS Resolvers”
In Kenjiro Cho, Kensuke Fukuda, Vivek S. Pai, and Neil Spring, editors,
Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015,
Tokyo, Japan, Oct. 28-30, 2015, pp.355–368. ACM, 2015.

 19 Hajime Tazaki, Kazuya Okada, Yuji Sekiya, and Youki Kadobayashi, “MATATABI
: Multi-layer Threat Analysis Platform with Hadoop” In IEICE ICSS, pp.113–118,
2014.

 20 Saeed Abbasi, “Investigation of Open Resolvers in DNS Reection DDoS
Attacks”, 2014.

 21 Jonathan R. Mayer and John C. Mitchell, “Third-Party Web Tracking: Policy
and Technology” In IEEE Symposium on Security and Privacy, SP 2012, 21–23
May 2012, San Francisco, California, USA, pp.413–427. IEEE Computer Society,
2012.

 22 Franziska Roesner, Tadayoshi Kohno, and DavidWetherall, “Detecting and
Defending Against Third-Party Tracking on the Web” In Presented as part of
the 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), pp.155–168, San Jose, CA, 2012. USENIX.

 23 Yuuki Takano, Satoshi Ohta, Takeshi Takahashi, Ruo Ando, and Tomoya Inoue,
“MindYourPrivacy: Design and implementation of a visualization system for
third-party Web tracking” In Ali Miri, Urs Hengartner, Nen-Fu Huang, Audun
J_sang, and Joaqu_n Garc_a-Alfaro, editors, 2014 Twelfth Annual International
Conference on Privacy, Security and Trust, Toronto, ON, Canada, July 23-24,
2014, pp.48–56. IEEE, 2014.

 24 MongoDB. http://www.mongodb.org/.
 25 Gary D. Bader and Christopher W. V. Hogue, “An automated method for _nd-

ing molecular complexes in large protein interaction networks” BMC
Bioinformatics, vol.4, p.2, 2003.

 26 Cytoscape: An Open Source Platform for Complex Network Analysis and
Visualization. http://www.cytoscape.org/.

 27 Stephen G. Kobourov and Kevin Wampler, “Non-Euclidean Spring Embedders”
IEEE Trans. Vis. Comput. Graph., vol.11, no.6, pp.757–767, 2005.

 28 Wireshark - Go Deep. https://www.wireshark.org/.
 29 libnids. http://libnids.sourceforge.net/.
 30 Antonis Papadogiannakis, Michalis Polychronakis, and Evangelos P. Markatos,

“Scap: stream-oriented network traffic capture and analysis for high-speed
networks” In Konstantina Papagiannaki, P. Krishna Gummadi, and Craig
Partridge, editors, Internet Measurement Conference, IMC’13, Barcelona,
Spain, Oct. 23–25, 2013, pp.441–454. ACM, 2013.

 31 Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and
Sotiris Ioannidis, “GASPP: AGPU-Accelerated Stateful Packet Processing
Framework” In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX
Annual Technical Conference, USENIX ATC ‘14, Philadelphia, PA, USA, June
19–20, 2014., pp.321–332. USENIX Association, 2014.

 32 Intel@ DPDK: Data Plane Development Kit. http://www.ntop.org/products/
pf_ring/.

 33 PF RING. http://www.ntop.org/products/pf_ring/.
 34 nDPI. http://www.ntop.org/products/ndpi/.
 35 WAND Network Research Group: libprotoident. http://research.wand.net.nz/

software/libprotoident.php.
 36 L7-_lter | ClearFoundation. http://l7-filter.clearfoundation.com/.
 37 Marco Danelutto, Luca Deri, D. De Sensi, and Massimo Torquati, “Deep Packet

Inspection on Commodity Hardware using FastFlow” In Michael Bader, Arndt
Bode, Hans-Joachim Bungartz, Michael Gerndt, Gerhard R. Joubert, and Frans
J. Peters, editors, PARCO, vol.25 of Advances in Parallel Computing, pp.92–99.
IOS Press, 2013.

 38 Alfred V. Aho and Margaret J. Corasick, “Efficient string matching: An aid to
bibliographic search” Commun. ACM, vol.18, no.6, pp.333–340, 1975.

 39 Snort :: Home Page. https://www.snort.org/.
 40 The Bro Network Security Monitor. http://www.bro.org/.
 41 Suricata | Open Source IDS / IPS / NSM engine. http://suricata-ids.org/.
 42 Ruoming Pang, Vern Paxson, Robin Sommer, and Larry L. Peterson, “binpac:

a yacc for writing application protocol parsers” In Jussara M. Almeida,
Virg__lio A. F. Almeida, and Paul Barford, editors, Internet Measurement
Conference, pp.289–300. ACM, 2006.

 43 Fabian Schneider, Jörg Wallerich, and Anja Feldmann, “Packet Capture in
10-Gigabit Ethernet Environments Using Contemporary Commodity Hardware”
In Steve Uhlig, Konstantina Papagian-naki, and Olivier Bonaventure, editors,
PAM, Vol.4427 of Lecture Notes in Computer Science, pp.207–217. Springer,
2007.

Title:J2016S-04-05.indd　p111　2017/03/15/ 水 09:14:10

111

 4-5 S4-TAP: Scacaale cand Saleexaale -TcaaxS Tacalyxy AacaafTrm

 44 Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek,
“The click modular router. ACM Trans” Comput. Syst., vol.18, no.3, pp.263–297,
2000.

 45 Muhammad Bilal Anwer, Murtaza Motiwala, Muhammad Mukarram Bin Tariq,
and Nick Feamster, “SwitchBlade: a platform for rapid deployment of network
protocols on programmable hardware” In Shivkumar Kalyanaraman, Venkata
N. Padmanabhan, K. K. Ramakrishnan, Rajeev Shorey, and Geoffrey M. Voelker,
editors, Proceedings of the ACM SIGCOMM 2010 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
New Delhi, India, Aug. 30 –Sept. 3, 2010, pp.183–194. ACM, 2010.

 46 Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan,
Haitao Wu, Yongqiang Xiong, Rui Gao, and Yongguang Zhang, “ServerSwitch:
A Programmable and High Performance Platform for Data Center Networks”
In David G. Andersen and Sylvia Ratnasamy, editors, Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2011, Boston, MA, USA, March 30–April 1, 2011, pp.15–28. USENIX
Association, 2011.

Yuuki TAKANO, Ph.D.
Researcher, Cybersecurity Laboratory,
Cybersecurity Research Institute
Computer Architecture, Network System,
Network Security

112　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-04-05.indd　p112　2017/03/15/ 水 09:14:10

4 Cyber-Security Technologies: Live Network Monitoring and Analysis Technologies

