
1 Introduction

Analysis of network traffic constitutes the foundation 
technology of network security. Many network security 
applications — such as intruder detection system (IDS), 
firewall, and network forensics — use certain techniques 
of network traffic analysis as their core technology. The 
analysis of network traffic requires a mechanism to obtain 
essential chunks of information (IP packet, Ethernet frame, 
and others) from the network flow. Candidate techniques 
that can fill the needs include the BSD Packet Filter (BPF) 
[1] used in the BSD systems, PF_PACKET [2] used in 
Linux, and the libpcap [3] which is a wrapper library of 
the former two tools. However, it has become increasingly 
apparent that conventional simple techniques, typically the 
traffic capture mechanism provided by the libpcap library, 
fall short of the requirements to cope with the highly so-
phisticated cyberattacks (e.g. targeted attack [4]) and traffic 
analysis of the networks with ever increasing bandwidth. 
To address this situation, the author is conducting research 
and development on the infrastructure technology for 
analyzing network traffic that should be flexible enough to 
accommodate machine-learning based advanced analysis 
algorithms that are capable of handling wideband networks.

In concrete terms, the research and development is 
focused on the development of SF-TAP (Scalable and 
Flexible Traffic Analysis Platform) — a software infrastruc-
ture for network traffic analysis at the application levels. 
The SF-TAP provides the following five features to realize 
easy and efficient network traffic analysis: 1) flow abstrac-

tion mechanism, 2) modularity, 3) core scale design, 4) 
horizontal scale architecture, and 5) operation capability 
on commodity devices.

The architecture and design concept of SF-TAP, as well 
as performance evaluation, have already been published 
elsewhere [5]. This report focuses on more practical aspects 
of SF-TAP, including the specific designs and internal im-
plementation, as well as the description of application 
cases.

2 Design

This section describes the design of the SF-TAP, and 
how scalability and flow abstraction capabilities are imple-
mented in it.

2.1 Design overview
Figure 1 illustrates the operation concept of the SF-TAP. 

The SF-TAP consists of two components — SF-TAP Cell 
Incubator and SF-TAP Flow Analyzer — and an entity 
consisting of the combination of these two is called a SF-
TAP Cell. The SF-TAP Cell Incubator is a component to 
realize horizontal scale, which captures traffic flowing in 
intra-networks and externally connected networks, then 
divides it into chunks on a flow unit basis, followed by 
transfer to multiple SF-TAP Cells. Conventionally, it has 
been considered difficult to transfer 10 Gbps network traf-
fic at the wire-rate speed using commodity hardware. The 
author has successfully realized this high-speed transfer 
utilizing the netmap [6]. The SF-TAP Flow Abstractor is a 
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component used to realize core scaling: it receives a flow 
from the SF-TAP Cell Incubator and reconstructs it before 
transferring it to multiple SF-TAP Flow Analyzers. In this 
way, SF-TAP is designed to guarantee multilayered scal-
ability. This design allows flexible rescaling of hardware 
configuration in response to the trend of the computa-
tional load, leading to more efficient utilization of compu-
tational resources.

Figure 2 illustrates the architecture of the SF-TAP. ST-

TAP’s architecture consists of four Planes: Capture Plane, 
Separate Plane, Abstractor Plane, and Analyzer Plane. The 
following paragraphs describe the role played by each 
Plane.

The Abstractor Plane classifies and abstracts the flow. 
This plane performs such operations as IP fragment reas-
sembly, flow identification, TCP stream reassembly, and 
identification of the application protocol using regular 
expression, before it sends the flow to an appropriate ab-
stracted interface. The user of this platform can construct 
an analyzer using the abstract interfaces provided by the 
plane.

The Analyzer Plane, which includes the analyzer con-
structed by the platform user as its component, carries out 
an analysis of the application’s protocol.

The Capture Plane plays the role of capturing network 
traffic. To be more specific, it corresponds to such mecha-
nisms as the port mirroring of the L2/L3 switch and SSL 
proxy.

The Separate Plane is used to analyze wideband network 
traffic. This plane transfers the traffic that has been captured 
by its constituting component — i.e. SF-TAP Cell Incubator 
— to multiple SF-TAP Cells based on the flow information.

Among the four planes, this report gives only a brief 
mention to the Capture Plane, because it assumes the use 
of well-known mechanisms such as L2/L3 mirroring. Also, 
detailed discussion is not given to the Analyzer Plane, as 
it assumes implementation by the user of this platform.

Thus, the following sections place focus on the descrip-
tion of the SF-TAP Flow Abstractor and SF-TAP Cell 
Incubator, both of which are the core components of the 
SF-TAP.

Fig.F 2　Detailed architecture of the SF-TAP
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2.2 SF-TAP Cell Incubator
The SF-TAP Cell Incubator performs L2 bridging, mir-

roring of wideband traffic, and load balancing on a flow 
unit basis. As shown in Fig. 2, the SF-TAP Cell Incubator 
architecture consists of the Packet Forwarder, IP Fragment 
Handler, and Flow Separator. The Packet Forwarder re-
ceives a L2 frame and transfers it to other NICs or IP 
Fragment Handlers. The IP Fragment Handler is a compo-
nent used to divide a flow, whereby an IP fragment is 
taken into consideration. It appropriately performs flow 
identification (both fragmented and unfragmented packets) 
and transfer the L2 frame to a Flow Separator. Based on 
the flow information, the Flow Separator, in turn, transfers 
it to plural SF-TAP Cells.

Open vSwitch [7] [8] is one of the software tools ca-
pable of controlling traffic on a flow unit basis, but its 
ovf-ctrl is unable to handle an IP packet properly if it is 
fragmented. There are other software tools, such as iptables 
[9] and pf [10], which can perform traffic control using a 
L4 header, but they are also weak in terms of fragment 
handling. In addition, these software tools described above 
tend to exhibit performance problems when dealing with 
wideband traffic.

2.3 SF-TAP Flow Abstractor
The SF-TAP Flow Abstractor is a component used to 

perform such operations as reassembly of IP fragment 
packets, allocation of flow ID and classification of flow 
protocols, and it provides abstract flow interfaces to traffic 
analysis applications. As shown in Fig. 2, the SF-TAP Flow 
Abstractor is a multicomponent tool consisting of an IP 
Packet Defragmenter, Flow Identifier, TCP and UDP 
Hander, and Flow Classifier. The IP Packet Defragmenter 
reassembles IP fragment packets, and the TCP and UDP 
Handler reassembles TCP packets. Note that the TCP and 

UDP Handler transfers UDP packets to the Flow Classifier 
intact (UDP packets do not need any reassembly). The Flow 
Identifier identifies a flow based on the IP address, port 
number and Hop count (the number of re-injections into 
SF-TAP Flow Abstractor), and assign an ID to the flow. The 
flow ID generated by the Flow Identifier is used in subse-
quent operations such as reassembling TCP and in multi-
thread processing of the flow.

The SF-TAP performs file based abstraction: a common 
approach with Plan 9 [11], BPF, and /dev of UNIX systems. 
Figure 3 illustrates the directory structure of the abstracted 
flow interface provided by the SF-TAP Abstractor. The 
flows, after being reassembled and having their IDs identi-
fied, are classified based on protocols and finally output to 
one of the files (UNIX Domain Socket) as shown in the 
figure. Analysis applications have to connect to these files 
to read in the flow to be analyzed. Note that the loopback7 
is a specialized interface for analyzing tunneling protocols, 
such as Proxy, and used solely for re-injection. The default 
interface is used as the common output destination for all 
the flows that defy identification by the Flow Classifier.

As shown in Fig. 3, more than one interface is available 
to the HTTP protocol (http [0‒3]). The purpose of this 
configuration is to enable load balancing of the HTTP 
flows and running analyzers on multiple CPUs. For ex-
ample, CPU resources can be more efficiently utilized if 
four processes are simultaneously activated on a HTTP 
analyzer and each of them is connected to a different HTTP 
interface.

3 Implementation

Figure 4 shows the main classes and functions con-
tained in the SF-TAP Flow Abstractor, as well as mutual 
relations among the threads. Based on the figure, this 

Fig.F 3　The directory structure of abstract flow interface
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section describes how the SF-TAP Flow Abstractor is imple-
mented.

3.1 Main classes of SF-TAP Flow Abstractor
The SF-TAP Flow Abstractor is constructed following 

the object-oriented concept, and implemented using C++ 
language. Thus, all the functions and variables are imple-
mented as an object through the use of the classes. The 
following are the main classes contained in the ST-TAP 
Flow Abstractor.

fabs_pcap　�Captures Ethernet frames using pcap.
fabs_netmap　Captures Ethernet frames using netmp.
fabs_ether　Transfers the captured Ethernet frame to an 
appropriate function.

fabs_fragment　Reassembles IPv4’s IP fragment pack-
ets.
fabs_udp　Processes UDP packet related jobs.
fabs_tcp　Processes TCP packet related jobs.
fabs_appif　Processes UNIX Domain Socket related jobs.
fabs_id　Manages flow IDs.
fabs_id_dir　A fabs_id class with additional flow direction 
information.

The classes fabs_pcap and fabs_netmap capture Ethernet 
frames using pcap and netmap, respectively. The Ethernet 
frame captured by either of these classes is handed over to 
the ether_input function that belongs to the fabs_ether 
class. When the Ethernet frame is transferred to the 
fabs_ether class its IP packet is extracted from the frame, 
followed by examination if it is an instance of a frag-
mented IPv4 packet. If it is, the packet is transferred to 
input_ip function (fabs_fragment class). If it is not an in-
stance of an IPv4 packet, and if it is either a UDP or TCP 
packet, it is transferred to the fabs_udp or fabs_tcp class 
through the operator( ) function (fabs_callback class).

The fabs_udp class transfers the packet to the fabs_ap-
pif class without performing any modification. The fabs_tcp 
class performs the same operation, but with TCP flow reas-
sembly before the transfer. The fabs_appif class identifies 
the application protocol used in the received packet, and 
controls (listen/accept/close) the UNIX Domain Socket 
including data input/output. Regular expressions — regular 
expression library re2 [12] — are used to identify the ap-
plication protocol, and matching determination was made 
using the fabs_appif:appif_consumer class (i.e. in_datagram 
or send_tcp_data function). Following the identification 
procedure of the application protocol, the data is output to 

an appropriate Unix Domain Socket. Data output to UNIX 
Domain Socket starts with the header, followed by the 
payload. Header output. The write_head function (fabs_ap-
pif class) carries out the header output. Payload output is 
carried out by two functions: the in_datagram function for 
UDP, and the send_tcp_data function for TCP.

Two classes, fabs_id and fabs_id_dir, are provided to 
control flow Ids. The fabs_id class is used to uniquely 
identify the stream, and the fabs_id_dir class holds, in 
addition to the fabs_id information, the directional infor-
mation (upstream/downstream) in the stream. The SF-TAP 
Flow Abstractor executes flow control based on the infor-
mation provided by these flow ID control classes.

3.2 Threads of SF-TAP Flow Abstractor
This section describes thread handlings performed by 

the SF-TAP Flow Abstractor. The basic approach taken by 
the SF-TAP Flow Abstractor to utilize threads relies on the 
producer-consumer pattern. Bottlenecks in multithread 
programming often come from synchronization process-
ing: if inadequately implemented, it can cause drastically 
reduced system performance and plague the system with 
hordes of multithread-related bugs (e.g. deadlock). However, 
use of producer-consumer patterns can reduce the amount 
of data shared among threads, simplifying synchronization 
processing.

The SF-TAP Flow Abstractor contains a low-level, 
spinlock based, synchronization mechanism independently 
which makes use of atomic operations. The reason for this 
implementation is to address the generation of function-
call overhead (typically such function as pthread_mutex), 
as well as the possibility of transfer of the thread process-
ing to the OS’s scheduler. Handover of thread processing 
to the OS’s scheduler gives rise to a context switching, 
which is highly likely to generate a large delay in synchro-
nizing among the threads. To avoid this, an independent 
synchronization mechanism is implemented. Low-level 
synchronization processing is realized by two classes: 
fabs_spin_lock class and fabs_spin_rwlock class. The 
fabs_spin_lock class contains simple spin-lock functions, 
and the fabs_spin_rwlock class contains readers-writer lock 
functions.

The SF-TAP Flow Abstractor uses, as shown in Fig. 4, 
the following five types of threads: Capture thread, IP 
Defragment thread, TCP/UDP thread, UX thread, and 
Classification thread. The Capture thread captures Ethernet 
frames using pcap or netmap. The IP Defragment thread 
reassembles fragmented packets of IPv4. The TCP/UDP 
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thread performs various processing related to TCP and 
UDP. The UX thread performs UNIX Domain Socket re-
lated processing such as listen, accept, and close. The 
Classification thread identifies the protocol used in applica-
tions and outputs data to UNIX Domain Socket.

4 Application cases

Up till now, the SF-TAP has been applied to investiga-
tive researches on DNS Open Resolver and third-party web 
tracking. This section gives a description of these applica-
tion cases.

4.1 Investigative survey on actual situations in 
which DNS open resolver is used

The DNS amp attack [13] [14] is a mode of DDoS attack 

strategies frequently reported from the year around 2013, 
which is characterized by the technique that exploits DNS 
servers (DNS open-resolver) that respond to the requests 
from unspecified multiple people. Because there are many 
DNS open-resolvers distributed on the Internet, the at-
tacker tries to invade by sending a falsified DNS query (the 
source IP address is masquerading as the IP address of the 
attack target) to a DNS open-resolver. The author con-
ducted wide-area investigation on the DNS open-resolvers 
that may serve as the cause for DNS amp attacks [15]–[17]. 
Figure 5 shows global distribution of DNS open-resolvers 
plotted on a world map. The investigation revealed that, as 
is apparent from this figure, numerous DNS open-resolvers 
are distributed worldwide.

To research into the distribution of DNS open-servers 
on the internet, use was made of a system consisting of the 

Fig.F 4　Implementations of SF-TAP Flow Abstractor
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following three components: a DNS Prober that explores 
DNS open-resolvers on the Internet, a Reverse Lookupper 
that traces back the data from the DNS Prober to locate 
the DNS open-resolver, and a Statistical Analyzer to obtain 
statistical information. A prototype version of the SF-TAP 
software was used, embedded in the DNS Prober and 
Reverse Lookupper, as the DNS packet analysis engine. As 
exemplified in this investigation, application of an appro-
priate traffic analysis mechanism makes the measurement 
and analysis of DNS servers much easier.

The results of this research have been cited as a refer-
ence in several papers [18]–[20]. Especially noteworthy for 
those interested in this field is the paper written by Kührer 
et.al. and presented in ACM IMC 2015 (the flagship confer-
ence in Internet measurement), which, in addition to the 
approach the author employed, carried out more detailed 
investigation including the device fingerprint of DNS open-
resolvers. 

4.2 Investigative research on third-party web 
tracking

Promotional websites and social networking sites usu-
ally scrape personal web browsing history secretly. This 
activity — called third-party web tracking — has become 
subject of debate as it may constitutes a serious breach of 
privacy [21] [22]. By the nature of this activity, many uses 
are suffering privacy breach without noticing it. Many 
users use these sites, especially social networking sites, by 
their real names, providing an easy link between their real 

names and web browsing history. The author is conducting 
research and development aiming at realization of informed 
consent in web advertising. The term “informed consent”, 
normally used in health-care field, means here that the user 
browses websites only based on a clear understanding and 
consent concerning what part of his/her private informa-
tion may be transferred to the website.

The MindYourPrivacy [23] is a system of the author’s 
own development for the visualization of third-party web 
tracking. It first analyzes HTTP traffic using a prototype 
implementation of the SF-TAP, and then stores the data in 
MongoDB [24]. Then, it analyzes the stored data to create 
a visual presentation of third-party web tracking for the 
user. Figure 6 shows an illustrative result obtained from 
this system (a result from the demonstrative experiment 
presented in the WIDE training camp – a meeting of 
network researchers). 

In this study, the author also proposed a method to 
extract — through clustering of the graph — the sites that 
are actually performing third-party web tracking. The re-
sults of MCODE [25]-based clustering are shown in the 
lower part of Fig. 6, The MindYourPrivacy stores the results 
of network traffic analysis in MongoDB for subsequent 
batched data processing. Visualization processing, as shown 
in Fig. 6, was performed manually using Cytoscape [26]. 
CHAKRA is an attempt to automatically carry out big data 
analysis on an online basis up to the point of visual pre-
sentation, i.e. a big data player with visualization capabil-
ity. Figure 7 shows an example of graph visualized by 

Fig.F 5　�Global distribution of DNS open-resolvers (as of Jul. 2013)
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CHAKRA. CHAKRA employs SF-TAP as the network 
traffic analysis tool, and draws graphics using an algorithm 
in which a spring model is applied on Riemann manifold 
[27]. A demonstrative exhibition of SF-TAP and CHAKRA 
was staged in Interop Tokyo 2015, the largest business show 
in Japan in the field of networking, where the SF-TAP was 

awarded the grand-prix in the science section and CHAKRA 
was award a special prize in the demonstration section of 
ShowNet.

5 Related researches

Traditional packet capture and analysis software tools, 
such as tcpdump [3] and WireShark [28], are still in wide 
use. The libnids [29] is a library for analyzing network 
traffic that can be used not only to capture packets but also 
to reassemble TCP flow. These tools operate basically on a 
single thread and are therefore unfit for the analysis of 
wideband traffic.

Tools capable of flow-level analysis of wideband traffic 
have also been proposed — i.e. SCAP [30] and GASPP [31] 
— and they proved the feasibility of realizing flow-level 
analysis of 10 Gbps traffic on commodity hardware. The 
SCAP works within Linux kernel, and is implemented with 
an acceleration mechanism — i.e. thread allocation to 
NIC’s transmission and receive queue. It comes with an-
other mechanism, called Subzero-Copy Packet Transfer, 
which makes it possible to analyze only the required traffic 
selectively. GASPP is an analysis engine that implement its 
functions through the use of GPGPU: the use of netmap 
[6] enables fast memory-to-memory transfer between NIC 
and GPU. The approach proposed by the author is similar 
to GASPP in view of its attempt to accelerate flow level 
analysis, but major differences exist in such aspects as: 
considerations on the scalability of flow analysis section, 

Fig.F 6　Data presented in WIDE training camp (Sept. 2013)

Fig.F 7　CHAKRA: a big data visualization system
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and equipment of common interface for easy realization of 
modularity.

Several types of high-speed packet capture frameworks 
have been proposed, i.e. netmap, DPDK [32], and PF_RING 
[33]. Conventional methods normally involve a prolifera-
tion of copying operations and interrupts in the transac-
tions among NIC, kernel, and the user, which make 
capturing in wideband traffic quite difficult. One of the 
objectives of the proposed methods is to reduce the fre-
quency of memory copy operations and interrupts drasti-
cally, making packet capturing at a 10 Gbps wire-rate a 
possibility. The author’s implementation uses netmap for 
capturing network traffic.

Several software tools, such as nDPI [34], libprotoident 
[35], l7 –filter [36], and PEAFLOW [37], have been pro-
posed to classify traffic at application levels. To identify the 
protocol used in the applications, these tools use either the 
Aho-Corasik [38] method or the regular expression pattern 
matching. PEAFLOW uses the parallel programing lan-
guage FastFlow to realize fast traffic classification.

The IDS software packages, such as Snort [39], bro [40], 
and Suricata [41], perform flow reassembly and analysis at 
the application level. One of them, bro, uses a protocol 
server language binpac [42] to enable analysis at the ap-
plication level. However, because Snort and bro operate on 
a single thread, they are unfit for the analysis of wideband 
traffic. On the other hand, Suricata is operable on multi-
thread and capable of handling wider band traffic. One of 
the characteristics inherent to these packages is the close 
coupling between functions, typically the sections for flow 
reassembly and analysis at the application level. This hin-
ders flexible modification of operation logics, and these 
packages tend to be bound to the rule description method 
and domain specific language provided by the software.

Schneider et al. [43] proposed an architecture to scale 
out through flow unit basis division of 10 Gbps traffic. 
Note, however, that they only demonstrated the validity of 
the method on 1 Gbps traffic, and the feasibility on 10 Gbps 
traffic still remains at a conceptual stage. SF-TAP, on the 
other hand, is implemented with the software to divide 
10 Gbps traffic on a flow unit basis and its functionality 
has been verified.

Click [44], SwitchBlade [45] and ServerSwitch [46] have 
been conducting researches to modularize network 
switches, thus enabling this function to be deployed on the 
network in a highly flexible and programmable fashion. 
Based on their approach, the configuration of analysis 
logic in the SF-TAP is also modularized to incorporate 

programmability in analysis procedures.
BPF [1] is a well-known mechanism for capturing 

packets which abstracts network traffic using a method 
similar to the UNIX’s /dev. In the SF-TAP, the concept used 
in BPF is further extended to enable traffic abstraction at 
flow levels. This also supports modularization of analysis 
logic and core scaling.

6 Conclusion

In this report, the author gave an explanation on the 
SF-TAP, a flexible and highly scalable infrastructure for 
network traffic analysis. With the use of the SF-TAP, net-
work traffic analysis at application levels becomes much 
easier than the conventional network traffic capturing 
techniques: for example, the technique that uses libpcap. 
Typically, the conventional techniques present difficulties 
in applying a sophisticated analysis method such as ma-
chine learning. This favorable feature owes much to the 
modularity- and scalability-oriented design of the SF-TAP.

The SF-TAP consists of two main components: SF-TAP 
Cell Incubator and ST-TAP Flow Abstractor. The SF-TAP 
Cell Incubator is a mechanism that enables two or more 
machines to analyze network traffic, thus it supports the 
realization of system scalability. The SF-TAP Flow Abstractor 
assumes the role of flow abstraction, whereby the file-based 
abstraction - which is also utilized in such tools as UNIX’s 
/dev, BFP, and Plan 9 - is used. This abstraction procedure 
enables the realization of modularity and effective utiliza-
tion of multiple CPU cores.

This report also describes how the SF-TAP Flow 
Abstractor is implemented. In terms of session layer pro-
tocols, the current SF-TAP Flow Abstractor is capable of 
handling only TCP and UDP. If it is to handle other pro-
tocols, such as QUIC in the future, the implementation 
method described in this report will serve as a useful refer-
ence. This is also true for addressing additional data frame 
link capturing mechanisms such as DPDK in the future: 
the current SF-TAP is capable of using only libpcap and 
netmap.

This report also gives some of illustrative applications 
of the SF-TAP. So far, the SF-TAP has been effectively 
utilized in such investigative researches as those on DNS 
open resolver and third-party web tracking. As the nature 
of these cases indicate, the methods used to analyze net-
work traffic represent the infrastructure technology to 
maintain network security, and they are of critical impor-
tance in implementing algorithmic research and develop-
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ment in important subjects such as IDS. The author is 
planning to continue SF-TAP based research and develop-
ment placing stronger focus on utility in the real world. 
The target areas include IDS, network traffic engineering, 
and network forensics.
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