
1	 Introduction

The smartphone has become an indispensable basic
tool in today’s modern lifestyle. With a smartphone, people
can not only make calls, check emails, and do web brows-
ing. They can also do internet shopping, do their banking
online, trade stocks, etc. Android phones are a typical ex-
ample of smartphones, but these have now become the
target of malicious third party attacks.

According to GDATA Software AG, there were already
1,575,644 Android malwares detected by the third quarter
of 2015[1][2]. These malwares include strong ransomware,
such as Simplocker that encrypts the user’s files, and
LockerPIN that sets/changes the phone’s PIN lock without
permission. For example, if LockerPIN changed the PIN
without permission, then that changed PIN will not be sent
to the user nor even to the attacker. Therefore, even if the
user pays the amount demanded by the attacker, the user
cannot obtain the changed PIN from the attacker because
the attacker does not know it. Security threats to Android
are already a pressing reality, and the damages are esti-
mated to be huge. Hence sufficient countermeasures must
be taken before an incident occurs[2].

Malware spreads in two main ways. One is where the
malware is downloaded from a market and installed, and
the second way (similar to a normal PC) is where the user
has downloaded and installed the application from a
website or email. Both ways of installing malware can occur
within the scope of normal usage of an Android phone. An
engineer who is always concerned about Android security
may probably take action beforehand so such malware is
not installed, but there is a broad base of Android users,
and users are not necessarily only engineers who know IT

in detail. Depending on the family there are a wide range
of users, from young children to elderly. Security must be
considered by taking all of them into account.

Various technologies are required for assuring Android
security, but in this paper a method of determining mal-
ware particularly in an Android app (hereinafter referred
to as “app”) is proposed. In the proposed method, various
types of metadata, such as text description of the app which
can be obtained from the web, are used in conventional
static analysis. When implementing the prototype, in addi-
tion to the method for determining malware, a vulnerabil-
ity determining function was also implemented, and a
system that can comprehensively determine risks of the app
was constructed. For details, refer to the author’s paper [3]
and documents [2][4], since this paper is a summary of
these.

2	 Various approaches to Android app
analysis

There are many technologies available for analyzing
APK files, and there are mainly two types of analysis:
static and dynamic analysis. Static analysis is the white box
method wherein the contents in the APK file are analyzed,
and dynamic analysis refers to the black box method
wherein without analyzing the contents within the APK
file, operations are performed on the Android OS and those
operations are analyzed. Both types of analysis are effective,
but this paper will focus on static analysis. The following
is an explanation of each typical approach.

2.1	 Use a blacklist
In this approach, the malware is identified based on a

6-3 Risk Analysis System for Android Applications

Takeshi TAKAHASHI and Tao BAN

The number of malware targeting Android terminals is growing. To cope with that, we propose
a malware detection technique for Android applications. The proposed technique uses APK’s
metadata obtained from the online APK markets along with static analysis techniques to improve
the accuracy of malware detection. Our prototype implements not only the malware detection
technique but also vulnerability detection techniques to protect Android terminals in an integrated
manner.

Title:J2016S-06-03.indd　p155　2017/03/15/ 水 09:16:56

155

6 Security Architecture Techniques

blacklist. Examples of blacklists are: A blacklist of hash
values of APK files known as malware, blacklist of risky
communication destination IP addresses/URLs, blacklist of
certificates of malware creators, etc. With these techniques,
operations can be done quickly and widely, but this as-
sumes the blacklist is created based on results that were
already evaluated by someone. Hence, the reliability of
newly released apps must be evaluated anew.

2.2	 Quantifying malware possibility based on
statistical processing

In this approach, the technique quantifies the possibil-
ity of being malware. One such method is called
DroidRisk[5], in which for each permission used by the
app, the expected value of risk is calculated, and the total
of all those expected values is considered as the risk value
of the entire app. Then, malware is determined by whether
or not that risk value has reached a certain threshold value.
More specifically, it calculates the probability of each re-
quested permission being exploited by the malware, and
the severity of the exploit. By multiplying these, it calculates
the risk value of each permission. Then, it totals the risk
values for all permissions that APK uses, and that value
shall be the risk value of that APK.

Even in this method, it achieves a certain level of
malware detection precision, but of course it is not perfect.
Actually, the expected value of a negative influence caused
by a certain permission will differ depending on the type
of app, but the context of the app is not taken into consid-
eration. For example, it is not unusual if there is request
for permission for accessing the phone book in the calen-
dar app, but it is quite unlikely that a calculator app will
make a request for such a permission. Such kinds of con-
texts are not taken into account, so it obviously limits the
precision of malware detection.

2.3	 Verifying deviations between text description
of app and actual functions

In APK markets, there are metadata such as app cate-
gory, app text description, etc. Research and development
on analysis of whether the text description of app matches
the actual operations is also reported. For example, in
CHABADA[6], clusters are generated from app text de-
scriptions, and for APKs belonging to each such cluster,
APKs having characteristics that are clearly different from
other APKs are judged as “apps where the actual functions
deviate from the app text description”.

In many malware, the actual operations differ from the

descriptive text, so by slightly adjusting these methods,
they can be put to good use for malware detection.
However, if the purpose is to detect malware, then rather
than comparing the text descriptions of apps vs. actual
operations, the detection ratio will be higher by the direct
method of implementing machine learning based on the
characteristics information of the app.

2.4	 Using machine learning
Quantification of an app’s risk and the method of

monitoring dubious usage of permission are both highly
effective, but if the purpose is narrowed down to binary
judgement of whether or not it is malware, the precision
of detecting malware will be highest with the machine
learning method. Support Vector Machine (SVM)[7] is one
machine learning methods. In this technique, for the target
data set, the characteristics of each data is mapped, and the
data set is divided into two by drawing a demarcation line.
This can also be used for malware analysis of apps, and for
the characteristics information of the entered APK file, all
the APKs files are divided into two by drawing a demarca-
tion line between what is malware and what is not. This
differs from the above mentioned risk quantification
technique, and it is difficult to implement evaluation that
is expressed in multiple stages such as malware identity,
but it is very precise for evaluating whether or not the
malware is binary.

This method inputs information which becomes the
APK’s characteristics, so it inputs parameters in which
characteristics of malware and non-malware could appear
easily, enabling achievement of a higher performance
malware identification system. For example, by entering the
permission request list being used in each app, a high
precision of determining malware can be achieved.

The above explanation of all the methods is based on
permissions, but in reality, rather than analyzing permis-
sions, the precision of analysis is usually higher when ana-
lyzing API calls. Hence, in each of above mentioned
methods, keep in mind the point that there will be im-
provement in precision of detection of malware by analyz-
ing API calls instead of permissions. For the sake of
simplicity, this paper omits study regarding API calls.

2.5	 Detecting vulnerability
The vulnerability information related to software can

be collected by searching data in the Japan Vulnerability
Note (JVN)[8] managed by Japan’s IPA, and the National
Vulnerability Database (NVD)[9] managed by the NIST in

156　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-03.indd　p156　2017/03/15/ 水 09:16:56

6 Security Architecture Techniques

the USA. Currently, most of the information collected is
assumed to be from PCs, and information related to
Android is limited.

Therefore, a technology by which people on their own
can determine the existence of vulnerabilities is also re-
quired. There are various methods, but APK files can be
analyzed by reverse engineering, and whether the program
contains vulnerable code can be checked. Here, the stan-
dards for unsafe coding are required, for example methods
such as judging risks of violating various coding guide
compliance can be considered. For example, “Android
Application Secure Design/Secure Coding Guidebook”[10]
released by the Japan Smartphone Security Association
(JSSEC). A method can be that when code that violates
guidelines determined here is detected, it can be judged as
vulnerable. This guidebook already has rules that should
be followed, so just by building tools that check the status
of compliance with these rules, the vulnerability check will
be automatically done to a certain extent.

3	 Proposed method

The proposed method uses metadata of the app col-
lected from the web. This metadata includes text descrip-
tion of app, category information etc. At present, only these
two types of information are being used. As a specific al-
gorithm, two types of methods are proposed.

First is the DRcategory, which is a method for extend-
ing DroidRisk. In DRcategory, in each metadata of the app,
DroidRisk is implemented. DroidRisk is a method for de-
termining malware by statistical processing, and it achieves
precision by implementing statistical processing for each
context of the app. We also built DRcluster, that auto-
generates clusters from the text description of app, instead
of category clusters, and implements DroidRisk for each
cluster. But it is omitted here.

We next propose SVMcluster, a method for extending
the SVM machine learning method. SVM is a method
where the characteristics of an app are extracted from
various parameters, and based on the parameters, the
characteristics are classified into two groups, depending on
whether malware is there or not. In the conventional SVM
method, the characteristics were configured based on only
information contained in the APK file, but in the proposed
method, characteristically different information such as the
metadata on the web are used for characteristics extraction.
In SVMcluster, machine learning is implemented on the
SVM using the cluster information generated from the text

description of the app and the static analysis result.
Both of the proposed methods mentioned above are

extensions and improvements of existing methods. Of
these, SVMcluster has the best performance anyway, so
currently we mainly use SVMcluster in the implementation
of the prototype described below. Refer to document [3]
for details on these methods.

4	 Constructing the prototype

This section describes the app risk evaluation system
that was built as a prototype of SVMcluster. In this proto-
type, all the apps installed in the Android phone are
monitored, and the risk is evaluated for each app. The risk
is evaluated from both aspects of threat and vulnerability,
and in threat evaluation, whether the app is malware or
not is evaluated in three levels. Here, three level evaluation
means “Red” “Yellow” “Unlit” evaluation in the sense of
signals. When there is a probability that the app is malware,
“Red” evaluation is given. When there is a possibility of
malware, “Yellow” evaluation, and when a risk cannot be
particularly detected by the current evaluation engine
“Unlit” evaluation is given. In vulnerability evaluation,
whether the app is seriously vulnerable or not is evaluated
in three levels, similar to the signal format.

The evaluation engines of threat and vulnerability are
independent, and various types of analysis methods can be
freely incorporated in each evaluation engine. This is done
because the current risk analysis method may not be opti-
mal in the future, and a single analysis method cannot
evaluate risks perfectly. Figure 1 shows a snapshot of our
current “Android App Risk Analysis” app.

The figure to left of Fig. 1 shows the comprehensive risk
evaluation of a certain app, and based on the evaluation of
threats and vulnerability, comprehensive risk was evaluated.
The configuration is such that, when the signal of the
evaluation result related to threat or vulnerability is tapped,
it displays detailed information which is the basis for the
respective evaluation. The central figure in Figure 1 shows
the threat evaluation results, and the figure to the right of
Fig. 1 shows the vulnerability evaluation results.

First, the results of threat evaluation show that multiple
evaluation standards are implemented. Currently, we imple-
mented DroidRisk evaluation (DRcategory), malware
evaluation based on SVM (SVMcluster), blacklist URL
check, etc. When a threat is detected by the malware
evaluation based on SVM or blacklist URL check, the threat

Title:J2016S-06-03.indd　p157　2017/03/15/ 水 09:16:56

157

6-3 Risk Analysis System for Android Applications

evaluation will be “Red”, otherwise when a threat is de-
tected by DroidRisk evaluation, the threat evaluation will
be “Yellow”. In this example, the threat was detected by
both DroidRisk and SVM methods, so the threat evaluation
will be “Red”. Similarly, the results of vulnerability evalua-
tion show that although there is no vulnerability informa-
tion registered in JVN, for items that are in violation of the
coding guide, the signal evaluation will be red.

For organizations with limited resources, it is difficult
from the point of view of human resources to prepare
everything with their own resources. However, one can
make effective technologies and tools by using techniques
that can auto-analyze like in threat analysis algorithms, by
reusing open information such as JVN, and by cooperating
with other organizations. Actually, we are collaborating
with Taiwan’s Institute for Information Industry (III) for
vulnerability analysis, and they are studying the coding
guides of not only Taiwan and Japan, but also those of
other major countries, and from those coding guides more
than six thousand rules have been extracted. This coop-
eration with them has also made it possible to cross check-
ing against these rules and implement vulnerability checks.

5	 Conclusion

Techniques for analyzing apps seem to have partly
reached a level of maturity in the field of research and

development, but considering that the environment is al-
ways continuously changing, continuous development is
desired. Also, when these techniques are actually used in
society, there will still be some problems to be resolved.
For example, the accuracy of the evaluation results in ac-
tual operations must be assured by the operation. Also,
when collecting/analyzing data sets, one must consider
points such as legal restrictions that cannot be crossed, and
the difficulty of deciding criteria for defining what is
malware, etc[4].

Acknowledgments

We wish to extend our heartfelt gratitude to Dr.
Koji Nakao, Senior Researcher, and Dr. Kazumasa Taira,
Research Center Director, for their support in conducting
this research.

ReferenceR
	 1 	 G Data, “G DATA RELEASES MOBILE MALWARE REPORT FOR THE

THIRD QUARTER OF 2015,” 17 12 2015. [Online]. Available: https://www.
gdata-software.com/g-data/newsroom/news/article/g-data-releases-mobile-
malware-report-for-the-third-quarter-of-2015.

	 2 	 Takeshi Takahashi, “Android Security ―― step-by-step review starting from
application to user issues,”(translated title) 10 3 2016. [Online]. Available: http://
www.atmarkit.co.jp/ait/articles/1603/10/news011.html. (in Japanese)

	 3 	 T. Takahashi, T. Ban, T. Mimura , K. Nakao, “Fine-Grained Risk Level
Quantification Schemes based on APK Metadata,” The 2015 International Data

Fig.F 1　Snapshot[s] of “Android App Risk Analysis” app

158　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-03.indd　p158　2017/03/15/ 水 09:16:56

6 Security Architecture Techniques

Mining and Cybersecurity Workshop, 2015.
	 4 	 Takeshi Takahashi, Tao Ban, “Techniques for identifying malware and applic-

tion vulnerabilities of Android applications,”(translated title) atmark IT, 28 3
2016. [Online]. Available: http://www.atmarkit.co.jp/ait/articles/1603/28/
news002.html. (in Japanese)

	 5 	 Y. Wang, J. Zheng, C. Sun , S. Mukkamala, “Quantitative security risk assess-
ment of android permissions and applications,” Proceedings of the 27th
International Conference on Data and Applications Security and Privacy
XXVII, 2013.

	 6 	 A. Gorla, I. Tavecchia, F. Gross , A. Zeller, “Checking App Behavior Against
App Descriptions,” ICSE’14: Proceedings of the 36th International Conference
on Software Engineering, 2014.

	 7 	 Wikipedia, “Support vector machine,” [Online]. Available: https://en.wikipedia.
org/wiki/Support_vector_machine. [Last access: 25 4 2016].

	 8 	 JPCERT/CC and IPA, “Japan Vulnerability Notes,” [Online]. Available: http://
jvn.jp/. [Last access: 1 2014].

	 9 	 National Institute of Standards Technology, “National Vulnerability Database
Version 2.2,” [Online]. Available: http://nvd.nist.gov/. [Last access: 1 2014].

	10 	 Japan Smartphone Security Association, “Android Application Secure Design/
Secure Coding Guidebook” 2 2016. [Online]. Available: http://www.jssec.org/
dl/android_securecoding_en.pdf.

Takeshi TAKAHASHI, Ph.D.
Senior Researcher, Cybersecurity Laboratory,
Cybersecurity Research Institute
Cybersecurity, Network Security

Tao BAN, Dr. Eng.
Senior Researcher, Cybersecurity Laboratory,
Cybersecurity Research Institute
Cybersecurity, Network Security

Title:J2016S-06-03.indd　p159　2017/03/15/ 水 09:16:56

159

6-3 Risk Analysis System for Android Applications

