
1 Introduction

IoT has become a major topic in a variety of industries,
especially in the field of ICT, as one of the mainstream
trends leading to the post-cloud computing age. The
Security Architecture Laboratory has set the design of an
anti-cyberattack architecture as one of the objectives in the
midterm research planning starting from FY2011, capable
of protecting a wide range of systems comprehensively —
from the cloud to resource-limited terminals. Along this
line, the author has conducted research and development,
including joint study in cooperation with researchers
overseas on such subjects as authentication protocols,
typically the RFID tag that plays an important role in IoT
terminals, and other application protocols.

The devices to be included in an IoT terminal can be
typically classified into two categories: a sensor and an
RFID tag. The major task assigned to the sensor is to
gather electronic data — such as temperature, humidity,
vibration — and then transmit the data to the server
(through, for example, a sensor-to-sensor communication
path). Research now underway on sensor security primar-
ily focuses on data protection and retention of secrecy of
location information. The main objective of an RFID tag,
which is affixed to a “Thing,” is to provide correct identi-
fication of it. As such, major security considerations include
impersonation resilience and privacy protection.

In this study, the author developed an authentication
protocol especially suited for IoT terminals that require a
high level of security and privacy protection, and weighed
proper steps to be taken for its implementation.

Although several research projects have been done in
this area, none of them have provided their authentication
protocols with rigorous security proof in terms of safety

and privacy, nor implemented such protocols in a fashion
that guaranteed sufficient safety and privacy [1]. The author
conducted a study, in cooperation with Mr. Moti Yung
(Google/Columbia University) and Associate Prof. Patrick
Schaumont (Virginia Technical University), to combine
two aspects of the challenge: theory and implementation.
Specifically, we developed an authentication protocol char-
acterized by provable security, and discussed the procedures
to be followed for its implementation, including evaluation
and analysis of constituent elements of the protocol. To
realize provable security, the protocol takes advantage of a
physically unclonable function (PUF), which utilizes the
production tolerance of electronic circuits as a fingerprint
to obtain a specific value. Based on this study, we finally
evaluated our approach by implementing the software and
hardware on an FPGA.

2 Construction of PUF-based
authentication protocol

2.1 Constituent elements
In this paper, we make use of the following crypto-

logic functions.
z Random number generator: TRNG generates true

random number sequences
z Physically unclonable function (PUF): The function

 determines the output z

 from
a physical characteristic

 and a message

 . The physical characteristic is basically deter-
mined based on the production tolerance of the IC
circuit, so that each terminal constitutes a function
that generates outputs dissimilar to others [2].

z Symmetric key encryption: SKE := (SKE.Enc, SKE.
Dec) represents a symmetry key encryption system,

6-6 Authentication Protocol and its Evaluation
for IoT Devices

Daisuke MORIYAMA

Recently, many people argue that Internet of Things becomes a new information source near
future. This project targets on establishing a cryptographically secure authentication protocol such
that resource limited devices can validate the peer device. We also discuss how to implement the
proposed protocol in software/hardware level via a FPGA board and show its result.

Title:J2016S-06-06.indd　p171　2017/03/15/ 水 09:17:15

171

6 Security Architecture Techniques

where SKE.Enc determines the ciphertext c from a
secret key

 and plaintext

 , and SKE.Dec restores
the plaintext

 from the secret key

 and ciphertext

 .
z Pseudorandom function: PRF,PRF’:

outputs a random number and an indistinguishable
bit series form the secret key

 and message

 .
z Fuzzy extractor: FE := (FE.Gen, FE.Rec) represents

a fuzzy extractor. FE.Gen outputs a random number

 and helper data

 from a variable input

 . FE.Rec
restores

 , when a combination of the following two
parameters is entered:

 , which should lie in a short
distance from

 , and

 . The fuzzy extractor guar-
antees statistical indistinguishability between

 and
true random numbers even if

 is known, as long
as the following conditions hold: the distance is no
greater than

 , and the minimum entropy of

 is no
smaller than

 . In many cases, fuzzy extractors
are configured by combining error correction code
and a randomness extractor[3].

2.2 Authentication safety model
This study assumes an IoT environment in which a

server communicates with a plurality of devices (total
number:

). The environment is supposed to have a
privacy level that defies intervention from malicious adver-
saries and should not be susceptible to man-in-the-middle
attacks. Particular concern should be exercised against the
possibilities of eavesdropping and tampering of communi-
cation content on the assumption that even the authentica-
tion results and non-volatile memory storage can be
threatened through physical attacks. An authentication
protocol is said to be safe if, under such circumstances, it
does not allow the server/terminal to accept any falsified
or tampered authentication attempts that may have been
generated by probabilistic polynomial time adversaries and
man-in-the-middle attacks (data tampering in the middle
of the communication route). In addition, the authentica-
tion protocol is said to satisfy privacy protection if it does
not allow identification of the terminal from which an
information leak takes place, even if all attempts are made
to analyze the leaked information from terminals and com-
munication lines.

2.3 Safe and privacy protective authentication
protocol

Figure 1 shows the flow of the authentication process

proposed by the author. The protocol is configured using
a PUF. Because the PUF is specific to each terminal, the
server must send an input

 to the terminal and receive
a response

 from it in advance (for safety, this preliminary
communication must take place offline).

In addition, the server sends a key,

 , to the server
and stores the two parameters (

 and

) in non-volatile
memory. In the next step of the authentication protocol,
the terminal uses the PUF and fuzzy extractor to generate
a random number

 , then encrypts the helper data

using

 while performing two-way authentication chal-
lenge and response using a pseudo random function PRF.
The PRF also outputs the following keys: the key that acts
as the random number used for XOR encryption of the
PUF outputs that correspond to different inputs as well as
for the message authenticator of entire messages, and the
key that should be updated for the maintenance of secu-
rity. Specifically, this approach has the following character-
istics.

z Key extraction through the use of PUF:
 In the setup stage, the server stores a PUF output

 .
In the authentication phase, the terminal uses a
physical characteristic value

 to seek

 .
Because it is not identical to

 , the terminal seeks
the helper data using a fuzzy extractor as

 . The server decodes the
helper data (encrypted before being sent) and deter-
mines it using the equation

 ,
enabling both sides to extract the same (random) key.
Thus, the use of PUF relieves the terminal of the need
to store

 in its volatile memory. Even if a malicious

Fig.F 1　Flow of the authentication protocol

172　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-06.indd　p172　2017/03/15/ 水 09:17:15

6 Security Architecture Techniques

adversary has a chance to peek into the volatile
memory, the proposed protocol can nonetheless
maintain safety.

z Two-way authentication and safe message transmis-
sion:

 After the key

 is successfully extracted on both
sides, the pseudorandom function is run to deter-
mine the bit series

 . The elements of the
bit series are used for the following purposes:

for two-way authentication,

 for XOR encryption
of the PUF output,

��	 as the key for generating the
value

 used to verify the entire message, and

 as
the key for updating.

z Exhaustive search
 In protocol communication, terminals do not output

specific values and IDs with a view toward protecting
privacy. Instead, the server performs exhaustive
search among the indices,

 , in the
database. Exhaustive search, albeit being inefficient,
is essential to give extra consideration to privacy. and
is a widely known approach in RFID authentication
in general.

3 Implementation of constituent
elements

For the protocol described in Section 2, theoretical
provability of its security can be demonstrated (see [4] for
the details). However, separate considerations are needed
as to the way in which it should be implemented. In this
Section, the author discusses the length and handling
method of each variable needed for implementation,
whereby a 128-bit security level is assumed for evaluation.

3.1 Architecture
An FPGA board, SASEBO-GII (a Japanese product), is

used as the implementation environment, which is a com-
mon practice in encryption studies. It is mounted with
2 Mbit SRAM (ISSI’s IS61 LP6432 A) and 16 Mbit flash
memory (ATMEL AT45 DB161 D). The SRAM is 64K
memory with 32-bit output, and the flash memory is ca-
pable of communicating with the FPGA through an SPI
connection.

3.2 SRAM PUF design
Much research has been done on PUF, and the SRAM

PUF has been chosen for this study because of its highest
cost efficiency. SRAM-type PUF is expected to provide the

required characteristics of PUF: observing the state of
SRAM at power up (indeterminate state before the execu-
tion of an active write operation) allows derivation of
chip-specific values. To evaluate a PUF, estimate of entropy
and the knowledge of noise for each output are required.
3.2.1 Entropy

In view of the fact that the output from PFU is not a
true random number, entropy estimation is performed to
obtain the measure of randomness. The data from 90
SASEBO-GIIs (each 2Mbit) was observed 11 times, and all
the data (990 × 2 Mbit) were used for analysis.

The Shannon entropy ratio is calculated using the equa-
tion

∑ ��� �������������� � ��� , where the data is di-
vided into a series of

 -bit blocks and each value is output
with probability

 . The calculation, with consideration
given to the terminal-dependent variations, gave a range of
ratio from 34-46%, which was independent of n. Shannon
entropy represents the average amount of information. If
the worst case scenario (i.e. minimum entropy ratio) is
needed, the equation

 should
be used instead. The minimum entropy calculation on a
bit-by-bit basis gave similar values to the Shannon entropy
ratio, but the calculation on a byte (

) basis gave a
range from 5-15%. This deviation was caused by the fact
that the value 0xAA was observed in many SRAMs. To
circumvent this problem, each 32-bit data is divided into
two 16-bit blocks and XORed with each other to balance
out the bias. This modification resulted in higher minimum
entropy ranges: the lower range limits for each terminal
were no smaller than 26%.
3.2.2 Noise

Noise is an another factor that affects the use of PUF.
For example, two identical observations of SRAM PUF do
not necessarily yield the same data: superimposed noise
causes small discrepancies. Use of error correcting code
within the fuzzy extractor may be effective to avoid this
problem, but it requires previous estimate of the noise
occurrence frequency to determine appropriate parameters.

The XOR operation in the previous entropy processing
inevitably increased the noise, which was evaluated to be,
on average, 6.6 bits per each 64 bits. From this result, the
amount of noise was assumed to be 10%. Measurement of
the Hamming distance between any pairs of PUF resulted
in 31.9 bits per 64 bits on an average, eliminating the pos-
sibility of confusing any two PUFs.
3.2.3 Usage as a random number generator

It is a common practice for a cryptographic protocol to
use (cryptologically safe) random numbers, but, in the case

Title:J2016S-06-06.indd　p173　2017/03/15/ 水 09:17:15

173

6-6 Authentication Protocol and its Evaluation for IoT Devices

of small-scale IoT devices, the generating element of the
random number may require some cost. Our approach can
make use of the noise associated with SRAM PUF (noise
occurrence frequency 10% as described above) to generate
a random number through repetitive XOR operations. In
fact, the random number generated through XOR opera-
tions of 8 sets of data was verified to meet the requirements
of the NIST randomness test [5]. In this case, a 128-bit
random number can be generated from 1024-bit raw SRAM
data. Because our protocol requires a 652-bit random
number, the volume of raw SRAM data needed to generate
it amounts to 5,216 bits.

3.3 Symmetry key encryption and pseudorandom
function

Because the proposed authentication protocol is de-
signed for use in IoT devices, we chose SIMON[6], a
lightweight block cipher, as the symmetry key encryption.
SIMON has gained higher reputation over other lightweight
ciphers, and supports multiple safety levels. SIMON, as
seen as a pseudorandom function, uses its encryption func-
tion Enc in CBC mode, in which the input message

 is first converted to a plaintext block consisting
of block ciphers, followed by entering the input size

 and
counter. The counter is incremented until the required
output length is obtained. The configuration of the imple-
mented pseudo random number generator is shown in
Fig.2.

3.4 Fuzzy extractor

3.4.1 Error correction code
Several methods have been investigated for the post-

processing of the PUF data. In this study, we use a
mechanism called “codeoffset,” which uses BCH code.
Assuming (BCH.Gen, BCH.Dec) a BCH code algorithm,
data is restored in the following fashion:

zz
zz

The input a has been XOR-encrypted using a random
number seed δ, eliminating the possibility of direct deter-
mination of a, even if hd information is leaked.

When

 -BCH code is applied to PUF data,
as the PUF output

 is divided into plural of

 -bit blocks,
exhaustive trials require the following number of computa-
tions.

This value must be larger than 128 bits. As the above
analysis of SRAM PUF shows, the minimum entropy ratio
is 26%. This indicates that if 504-bit data is divided into 8
blocks and (63, 16, 23)-BCH code is applied, it will contains
504 × 0.26 > 128-bit equivalent of random data.

Although the (63, 16, 23)-BCH code is capable of cor-
recting (23－11) / 63 × 100 = 17.5% of errors, the
probability that 63-bit data may contain more than 12 error
bits reaches 2.36% because each bit in SRAM PUF has 10%
of noise. Thus, the probability that all 8 blocks are restored
correctly will be no greater than (1－0.0236)8z× 100 =
82.6%. To improve the probability, we adopted the follow-
ing steps: original data is arranged in a matrix form and
then commutated, followed by code-offset error correction
using the same parameter. This approach improved the
probability that all eight blocks are properly error cor-
rected up to 1－1.92 × 10-6, although two times as large
as the helper data generated.
3.4.2 Randomness extractor

The randomness extractor is an algorithm used to ex-
tract a random number from a non-uniform array of bits
(in this study, the array is generated by PUF). In this study,
we adopted the pseudorandom function described above
— i.e. symmetric key encryption based pseudorandom
function — as the randomness extractor. Because the
randomness extractor is inherently a probabilistic algo-

Encode���:	δ	 ← TRNG	 ∈ �0,1���, �� �� ���� Gen��� 	∈ 	 �0,1���, �� �� � � ��

Decode���� ���� ��� � �� � ��� �� �� ���� Dec������ � �� �� � ��

2����������

Fig.F 2　Pseudorandom function that uses symmetry key encryption

174　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-06.indd　p174　2017/03/15/ 水 09:17:15

6 Security Architecture Techniques

rithm, it requires a random number element. From the
results of past research, at least twice as long a random
number is required to maintain sufficient security as that
dictated by the security level. Thus, a 256-bit random
number is needed to guarantee 128-bit security.

To summarize the analysis described in this Section,
required lengths of data and variables used in this protocol
are listed in Table 1.

4 Architecture design

Figure 3 shows the system architecture — server and
terminal — used for evaluating the proposed protocol. The
system is implemented using a PC and SASEBO GII as
emulators, and the terminal is realized by installing a micro-
controller (MSP430) as a soft core inside the FPGA on
SASEBO GII. On an as-needed basis, the encryption pro-
cess is directly written to the FPGA (hardware engine) for
comparison between hard- and soft-core implementation.

Fig.F 3　The server and terminal architecture used in implementation evaluation

TableT 1　Data length and key length of the proposed protocol

Title:J2016S-06-06.indd　p175　2017/03/15/ 水 09:17:15

175

6-6 Authentication Protocol and its Evaluation for IoT Devices

The system makes accesses to SRAM and non-volatile
memory (EEPROM) mounted on the SASEBO GII as ap-
propriate as the protocol proceeds. In the case of soft-core
implementation, both the program memory and data
memory reside in MSP430: the encryption protocol is
written in the program memory, and variable values are
stored in the data memory. The server side has a database
that contains such information as the secret keys and PUF
outputs obtained from the terminal. In the implementation
of this study, the server and terminal communicate with
each other through a USB serial link.

The hardware engine contains such procedures as the
encryption steps according to SIMON, calculations per-
formed by pseudorandom function that makes use of
SIMON, and BCG code calculations. The hardware engine
and MSP430 exchange data through the medium of com-
mon memory. When the hardware engine is used, necessary
information is copied from MSP430 memory to the com-
mon memory before activating the above-described pro-
cesses on the hardware. Then, the results are written in the
common memory, allowing access from MSP430. This

method entails overhead determined by the volume of
communication, but, as shown in the next Section, the
communication works faster than the all-software imple-
mentation.

5 Implementation evaluation

In this Section, we evaluate the following items using
the actual implementation of the system: the cost associ-
ated with the terminal implementation, and calculation
complexity. Three cases were examined in this study: two
software implementations (64-bit security and 128-bit se-
curity) on MSP430, and a hardware engine (128-bit secu-
rity).

5.1 Implementation cost
Memory usage for the three cases is summarized in

Table 2 (object code and data memory usage on MSP430
included). GNU gcc compiler (ver.4.6.3, optimization level
2) was used to produce object code for MSP430. MSP430
is mounted with 8 KB memory, enough volume to allow
all three implementations.

5.2 Computational complexity
Table 3 shows the comparison of computational com-

plexity (in system clock unit) for three different implemen-
tations of the protocol. In view of the resource-limited IoT
devices, MSP430 was run at 1.846 Mhz. Computational
complexity was drastically reduced in the hardware engine-
based implementation. Note here that the figures in the
Table include the time required to transfer data to the
hardware engine (actual computation for the encryption
process took 4,486 clocks).

TableT 2　Memory footprint (byte) in MSP430

TableT 3　Calculation complexity of the proposed protocol (cycles)

176　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-06.indd　p176　2017/03/15/ 水 09:17:15

6 Security Architecture Techniques

6 Concluding remarks

In this report, the author explained the process of put-
ting an anonymous authentication protocol for IoT de-
vices into practice — from the theoretical foundation to
software/hardware implementation — as well as its evalu-
ation. Evaluation of the authentication scheme as a whole,
with all the constituent elements of the protocol imple-
mented in it, provides an important viewpoint for verifying
future operability in actual terminals. This study places
focus on the implementation method of the protocol, and
indicates that there is yet room for improvement. Viewed
from the architecture level, for example, there seems to be
room for further item-by-item optimization -e.g. computa-
tional complexity, implementation cost, and power con-
sumption. Note that another implementation approach
— using a different PUF, lightweight symmetric key en-
cryption, and error correction code — can lead to different
results. Comparative evaluation of these approaches enables
deriving the optimum authentication protocol, which will
be implemented in a variety of IoT devices provided by
private sector companies in the future. The author hopes
the protocol will contribute to the realization of an ICT
society with due considerations given to user security and
privacy.

ReReRenReR
 1 Delvaux,J., Gu,D., Peeters,R., and Verbauwhede,I., “A survey on lightweight

entity authentication with strong PUFs,” IACR Cryptology ePrint Archive
2014/977, 2014.

 2 Maes,R., “Physically Unclonable Functions - Constructions, Properties and
Applications,” Springer, 2013.

 3 Dodis,Y., Ostrovsky,R., Reyzin,L., and Smith,A., “Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data,” SIAM J. Comput.
38(1), pp.97–139 , 2008.

 4 Aysu,A., Gulcan,E., Moriyama,D., Schaumont,P., and Yung,M., “End-to-end
design of a PUF-based privacy preserving authentication protocol,” In: CHES
2015. LNCS, vol.9293, pp.556–576. Springer, Heidelberg. Full version is avail-
able at IACR Cryptology ePrint Archive 2015/937, 2015.

 5 Rukhin,A., Soto,J., Nechvatal,J., Smid,M., Barker,E., Leigh,S., Levenson,M.,
Vangel,M., Banks,D., Heckert,A., Dray,J., and Vo,S., “A statistical test suite for
the validation of random number generators and pseudo random number
generators for cryptographic applications,” Special Publication 800-22 Revision
1A, April, 2010.

 6 Beaulieu,R., Shors,D., Smith,J., Treatman-Clark,S., Weeks,B., and Wingers, L.,
“The SIMON and SPECK families of lightweight block ciphers,” IACR
Cryptology ePrint Archive 2013/404, 2013.

Daisuke MORIYAMA, Ph.D.
Former Researcher. Security Architecture
Laboratory, Network Security Institute
Cryptographic Protocol

Title:J2016S-06-06.indd　p177　2017/03/15/ 水 09:17:15

177

6-6 Authentication Protocol and its Evaluation for IoT Devices

