
1	 Introduction

Cryptographic protocols are designed to achieve vari-
ous security goals, such as data confidentiality and entity
authentication, even when the communication takes place
over unsecure networks. In recent years, critical vulnera-
bilities in protocol specifications have been frequently re-
ported [1]–[3]. For example, on 14th of October 2014,
Google researchers announced a new vulnerability in SSLv3
(Secure Socket Layer version 3.0) that allows man-in-the-
middle attackers to obtain clear text data, aka the
“POODLE” attack [1]. For early detection of such vulner-
abilities in protocol specifications, the development of
analysis methods is in urgent need.

 There exist two approaches for analyzing the security
of cryptographic protocols, known as the manual (or the
cryptographic) approach and the formal (or the symbolic)
approach. In both approaches, it is assumed that the used
cryptographic primitives are secure. The central features of
the manual approach are detailed models for various types
of cryptographic protocols and attackers in the crypto-
graphic model. From these features, the resulting security
proofs offer powerful security guarantees. A serious draw-
back of this approach is that proofs become more difficult,
tedious, and error-prone if we try to analyze more complex
protocols against powerful attackers. In contrast, the formal
approach that abstracts the details about the protocol
specifications and environments in the symbolic model
leads to considerably simpler proofs, and can benefit from
machine support. However, it has been proved that no
general formal method that analyzes the security for all
possible cryptographic protocols exists. These advantages

and drawbacks make it important to devise various meth-
ods through both approaches for successful analysis.

 This report presents our main contributions on proto-
col analysis in the two approaches — proof of powerful
security [4] and abstraction for automated analysis [5]. In
[4], through the manual approach, we derived a lower
bound on the communication complexity of an arbitrary
cryptographic protocol that realizes non-interactive secure
multi-party computation. This bound clarifies the limit of
efficiency, and further provides a criterion for security
analysis because any secure protocol cannot exceed this
bound. If the communication complexity exceeds the
bound, we can conclude that the protocol is vulnerable.
Then, we presented an efficient construction of secure
protocols, which shows an upper bound on the communi-
cation complexity. In [5], we improved the previous formal
approach and presented an abstraction method that guar-
antees exhaustive detection of attacks against a specific
class of cryptographic protocols that use public-key cryp-
tosystems. Although being applicable to a limited class of
cryptographic protocols, the global share of public keys
such as the public key infrastructure is allowed. This con-
tributes to automated analysis for practical environments.

 The rest of this report is organized as follows. Section 2
shows the derived lower and upper bounds on the com-
munication complexity of cryptographic protocols for
non-interactive secure multiparty computation in [4].
Section 3 presents an overview of the improved formal
approach and abstraction method in [5]. Finally, Section 4
concludes this report.

6-7	Two Approaches to Analyzing the Security of
Cryptographic Protocols

Maki YOSHIDA

Cryptographic protocols are designed to achieve various security goals, such as data
confidentiality and entity authentication. However, critical vulnerabilities in protocol specifications
have been frequently reported. Thus, one of the most important issues is the development of
methods of analyzing the security of cryptographic protocols. This report presents our main
contributions on protocol analysis in the two approaches, known as the manual (or the
cryptographic) approach and the formal (or the symbolic) approach.

Title:J2016S-06-07.indd　p179　2017/03/15/ 水 09:17:21

179

6 Security Architecture Techniques

2	 Cryptographic analysis

 Secure multi-party computation (MPC) aims to enable
multiple players to co-operatively compute various func-
tions in the presence of adversaries. MPC was first intro-
duced by Yao [6] and because of its importance in
cryptography, there have been presented many variants so
far [7]–[9]. We consider non-interactive MPC (NIMPC)
against honest-but-curious adversaries in the information-
theoretic setting, which was introduced by Beimel et al.
in [9].

2.1	 Non-interactive secure multi-party
computation

We recall the notations and definitions of NIMPC in-
troduced in [9]. Let be the number of players and

 . Let ,
and 	Ω be finite domains. Let be a family of functions
��� �� � ��� → Ω . An NIMPC protocol for is a triplet

 where
z	 a randomness generation function

 given a description of a function
 generates correlated random inputs

with ,
z	 a local encoding function takes

an input and the correlated random input
 and outputs a message ,

z	 a decoding algorithm ������ � ���� ⟶ Ω
reconstructs ������ � ��� ∈ Ω from the messages
	�� � ��	 with .

An NIMPC protocol is also described in the language of
protocols. Such a protocol involves players, each holding
an input , and an external “output server” with no

input (see Fig.　1). For an NIMPC protocol
 for a class of functions ,

let denote the protocol that may have an additional
input, a function , and proceeds as follow.
z	 Offline preprocessing: Each player receives

the random input where ���, … , ��� ←
.

z	 Online messages: On the random input ,
each player sends the message

 to the output server.
z	 Output: The output server computes and outputs

 .
The communication complexity is evaluated by the
summation of log�|��|, … , log�|��|, , and that of
log�|��|, … , log�|��| .

The requirements for an NIMPC protocol
 are defined as follows.

z	 Correctness: We say that Π is correct if the output
server outputs the value with probabil-
ity 1. Specifically, for any , with ,
and ,
�������, ���� � ����, … , ��� .

z	 Robustness: For a subset , we say that Π is
 -robust if the corrupted players and the output

server can simulate their view of the protocol (i.e., the
random inputs and the messages)
given oracle access to the function restricted by
the other inputs (see Fig. 2). We say that
Π is fully robust (or simply refer to Π as an NIMPC
protocol for) if Π is -robust for every
of size .

Fig.F 1　An NIMPC protocol Π for H

Output server

h�x1,...,xn�∈Ω

Player nPlayer 1x1∈X1 xn∈Xn
・・・

GEN

h	∈H

m1∈M1 mn∈Mn

r1∈R1 rn∈Rn

・・・

・・・

ENC1 ENCn

DEC

Generation of the random inputs

Generation of the messages

Computation of the output value

1. Offline preprocessing

2. Online messages

3. Output

180　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-07.indd　p180　2017/03/15/ 水 09:17:21

6 Security Architecture Techniques

2.2	 Lower and upper bounds on the
communication complexity and its application
to security analysis

We derived a lower bound on the communication
complexity of every fully robust NIMPC protocol Π for an
arbitrary class of functions . If the communication
complexity of a protocol exceeds the bound, then we can
see that the protocol is not fully robust and leaks some
information on the function or inputs. The communication
complexity is bounded by the size of target class. More
specifically, the communication complexity cannot be
smaller than the logarithm of the size of the target class
log� ��� . Thus, we have a larger communication complex-
ity if we allow a larger number of functions to be evalu-
ated. Our technique for deriving lower bounds is quite
simple and useful for approximating the amount of com-
munication. For the target class of functions , we first
assume the existence of a correct NIMPC protocol ��Π�
with some communication complexity and show a
method for a server to send data to a client by encoding

data � � �1,… , |�|� into a function and evaluating
the function (see Fig. 3). Thus, the communication com-
plexity is bounded by the description length of . If the
assumed communication complexity is smaller than the
logarithm of the size of the target class, i.e., ,
then the contradiction is implied. Thus, it holds that

 , and the communication complexity is lower
bounded by log� ��� . We note that this lower bound is
common to both information theoretically secure protocols
and computationally secure ones because the proof only
depend on the correctness.

Table 1 shows the communication complexity for two
major classes of functions (the arbitrary functions and the
indicator functions). An indicator function is the function
defined to be identically one on a specific input, and is zero
elsewhere. An arbitrary function is represented by the sum
of indicator functions. For the class of indicator functions
whose number equals to that of possible inputs , the
communication complexity is lower bounded by the input
length log� ��� . For the class of arbitrary functions with

Fig.F 2　T-robustness of NIMPC protocol Π for H

Fig.F 3　Data transmission using an NIMPC protocol

1. Offline preprocessing

2. Online messages

3.Output

h1

h|H|

1

|H	|

ha
Server

Client

Execute the processes of online messages and output
for all possible inputs to identify ha and obtain a

{r1,...,rn}

Execute the process of offline preprocessing for
the function ha corresponding to the sent data a

ha

Corrupted playersUncorrupted players

{mi}i∈[n]/T

{ri}i∈[n]/T {ri}i∈T

Oracle

{xi}i∈T

({ri}i∈T, {mi}i∈[n]/T)

GEN

h	∈H

Output server

�ENCi}i∈[n]/T �ENCn}i∈T

DEC

h�x1,...,xn�∈Ω

Restricted by the inputs of
uncorrupted players

{xi}i∈[n]/T

{xi}i∈[n]/T

Repeatedly encode
any inputs of
corrupted players

h(x1 ,..., xn)

\
\

\

\

\

\

Title:J2016S-06-07.indd　p181　2017/03/15/ 水 09:17:21

181

6-7 ﻿﻿Two Approaches to Analyzing the Security of Cryptographic Protocols

 -bit output, the lower bound is . However, there
is an exponential gap between the derived lower bound and
the previous construction in [9].

We then reduced the gap between the lower and upper
bounds to quadratic in the input length by presenting a
more efficient construction of an NIMPC protocol for the
indicator functions in [4].

3	 Symbolic analysis

We improve the formal approach proposed by Canetti
and Herzog in [11], called the universally composable
symbolic analysis, and present a method to abstract cryp-
tographic protocols that share keys via Public-Key
Infrastructure (PKI).

3.1	 Improving the universally composable
symbolic analysis approach

In [11], Canetti and Herzog have proposed the follow-
ing approach.
z	 Using the universal composition framework (UC):

The UC framework [10] provides a general way for
specifying the security requirements of crypto-
graphic tasks and asserting whether a given protocol
realizes the specification. A salient property of this

framework is that it provides strong composability
guarantees: a protocol that realizes the specification
in isolation continues to realize the specification
regardless of the activity in the rest of the network.
Thus, it is enough to abstract a single session of the
isolated protocol.

z	 Proving the computational soundness of the ab-
stracted (symbolic) model: The computational
soundness here means that if the adversary in the
UC setting can do nothing, then the abstracted,
symbolic adversary cannot also do (except with
negligible probability). This allows us to apply an
automated symbolic method to security analysis.

The UC framework used by the previous work in [11],
[12] is UC with Joint State (JUC) [13]. The JUC framework
provides a means to deduce the security of the multi-session
case from the security of a single session, even when some
joint state is used by each protocol (e.g., the protocol-private
keys) as shown in the right side of Fig. 4. However, this
framework is not suitable for real-world protocols in the
Internet where keys are used by multiple protocols such as
various versions of TLS.

In this work, to consider an execution of protocols in
a setting involving a global setup (e.g., PKI) where keys are
shared among multi-sessions of an arbitrary protocol, we
use Externalized UC (EUC) [14] that provides the compo-
sition guarantee even when the same computational entity
is used as a subroutine within multiple protocols as shown
in the left side of Fig. 4.

To present the computationally sound abstraction in
the EUC framework, we first define syntax and semantics
of target protocols, called simple protocols, in both EUC
framework (concrete model) and symbolic model (Fig. 5)
We then define the trace of an execution of a simple pro-
tocol within the EUC framework. The trace provides a
global view of the execution, consisting of a sequence of

Fig.F 4　Differences of the UC framework between this work and the previous work

Sessions of protocol 1 Sessions of protocol 2Sessions of protocol 1

PKI

Sessions of protocol 2

Global key shared by PKI Protocol‐private keys

This work (EUC framework) Previous work (JUC framework)

TableT 1	 The communication complexity of -player NIMPC
protocols for two families of functions ��� �� � ��� → Ω
where and � � �������� |��| .

All functions
 (

-bit output)

The indicator
functions

(1-bit output)
Derived lower
bound

|�| � �

log�|�|
 Previous protocols

in [9]
|�| � � � �� � �

 Proposed protocols |�| � � � �log� ��� � �

�log� ��� � �

182　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-07.indd　p182　2017/03/15/ 水 09:17:21

6 Security Architecture Techniques

input, outputs, messages, and local variables (represented
in bit-strings). It also contains the participants’ calls to the
shared functionality, thus capturing the global use of keys.
In a similar way, we define the trace of an execution of a
symbolic protocol within the symbolic model. Again, the
trace represents a global view of the (now symbolic) execu-
tion. Here, the trace consists of a sequence of expressions
from the underlying symbolic algebra. Next, we define a
trace mapping which translates a trace of a concrete simple
protocol into a symbolic trace. Finally, we show that this
mapping provides soundness to trace properties in the
symbolic protocol. That is, the trace mapping almost always
(except for negligible probability) translates a trace of a
concrete simple protocol to a valid trace of the correspond-
ing symbolic protocol. The term “valid” here means that
the trace could have been produced by the symbolic pro-
tocol. From this mapping lemma, if there is no attack in
any symbolic trace, then we conclude the original concrete
protocol is secure.

3.2	 Overview of our computationally sound
symbolic model

The central part in our abstraction is the mapping
lemma that establishes a correspondence between execu-
tions of concrete simple protocols and executions of the
corresponding symbolic protocols.

In the symbolic model that we use for abstracting
protocols, messages are represented as compound elements

in some symbolic algebra. That is, each compound element
represents a “parse tree,” or a sequence of operations
needed to obtain the composite symbol from atomic sym-
bols. The atomic symbols are used to represent primitive
structures such as party identifiers, messages, random
nonces, cryptographic operations, and their keys denoted
by , and so on.
The compound elements of the algebra (those messages
produced by the operations with keys) represent those
messages that encrypt or sign primitive messages such as

 .
A symbolic trace is a sequence of events, and a trace is

valid for a protocol if the messages delivered by the adver-
sary to the participants are consistent with the adversary’s
computations, and the messages sent by participants are
consistent with the messages received and the protocol. The
symbolic adversary can deduce new messages from the
initial messages and the messages generated by parties
running the protocol. The adversary operations are ex-
tremely limited. Specifically, the adversary cannot perform
any operations other than the symbolic ones such as con-
catenate messages, decompose elements of a message, en-
crypt a message with a given public key, or decrypt a
given symbolic ciphertext if the corresponding secret key
is corrupted.

The translation of a concrete message to a symbolic one
requires knowledge of events that occur in the trace. The
previous work based on the JUC framework [11][12]

Fig.F 5　An abstraction method to guarantee the computational soundness of a symbolic model

Syntax of protocols
• Generation of nonces
• Cryptographic operations
• Input and output
• Send and receive

UC framework (Concrete model） Symbolic model

Semantics of protocols
Executions in each model

Valid traces
Sequences of events

occurred in the executions

Mapping lemma
Correspondence of traces

between two models

UC semantics
・ Messages: Bit-strings
・ Protocols: Interactive Turing

Machines （ITMs）
・ Execution: Sequence of activations of

ITM instances (ITIs)
・ Adversary write any messages to the

communication tapes of ITIs

Traces of concrete protocols
Sequences of events produced by the

activations of ITIs that model the
adversary, honest participants, and

the environment

Symbolic semantics
・ Messages: Algebraic terms
・ Protocols: Transition functions
・ Execution: Transitions from state to

state
・ Adversary deduces new messages from
the initial messages and the messages
transmitted by parties

Traces of symbolic protocols
Sequences of adversarial-events

representing valid adversary actions and
each participant-events consisting with

the transition function

State State

Computational soundness

Input

Output
Transmitted messages

ITM

Input
Output

Work

ITM

Title:J2016S-06-07.indd　p183　2017/03/15/ 水 09:17:21

183

6-7 ﻿﻿Two Approaches to Analyzing the Security of Cryptographic Protocols

concentrates on a restricted class of protocols that use no
cryptographic primitives other than JUC-secure public-key
encryption. In conjunction with the treatment of joint state,
the use of public-key encryption is modeled as interaction
with an ideal functionality. Thus, by observing all calls to
the ideal functionality, we can define the mapping function
from concrete messages/ciphertexts to symbolic messages/
ciphertexts. The ciphertexts generated by the adversary in
local are considered as “invalid” and mapped to a special
symbol called the “garbage” symbol.

In contrast, in this work based on the EUC framework,
we cannot model cryptographic primitives as ideal func-
tionalities because no EUC-secure cryptographic primitives
such as public-key encryption and digital signature have
been known. Thus, we need to develop a new method to
map concrete messages to symbolic ones.

Our method is to observe all calls to the shared func-
tionality, which models PKI. We use the keys generated by
the shared functionality to check the validity of ciphertexts
and signatures. If a ciphertext (resp., a signature) is de-
crypted (resp., verified) by a valid key, then it is mapped
to a corresponding symbolic message, otherwise, the
“garbage” symbol. In this way, even if the used crypto-
graphic primitives are not EUC-secure, we success to es-
tablish a correspondence between two models in a proof
of the mapping lemma, and guarantee the computational
soundness of the symbolic model.

4	 Conclusion

In this report, we presented essential parts of our
contributions on protocol analysis in [4][5]. The first result
we report here is the characterization of the common
feature of NIMPC protocols. We derived a lower bound on
the communication complexity, which can be used for
security analysis. The second is a formalization of PKI-
based cryptographic protocols to automatically analyze the
security.

The conventional analysis methods assume the security
of used cryptographic primitives. However, recent vulner-
abilities such as the Logjam attack in May 2015 [2] and the
SLOTH attack in Jan. 2016 [3] allow man-in-the-middle
attackers to use “export-grade” weak cipher suits in TLS
(Transport Layer Security). Thus, a possible future work is
to develop analysis methods that include such attack
methodologies.

ReferenceR
	 1	 Möller B., Duong T., and Kotowicz K., “This POODLE bites: SSL 3.0 fallback

(security advisory),” https://www.openssl.org/˜bodo/ssl-poodle.pdf, 2014.
	 2	 Adrian D., Bhargavan K., Durumeric Z., Gaudry P., Green M., Halderman J.A.,

Heninger N., Springall D., Thomè E., Valenta L., VanderSloot B., Wustrow E.,
Zanella-Bèguelin S., and Zimmermann P., “Imperfect forward secrecy: How
Diffie-Hellman fails in practice,” In: The 22nd ACM Conference on Computer
and Communications Security (ACM CCS 2015), pp.5–17, 2015.

	 3	 Bhargavan K. and Leurent G., “Transcript collision attacks: Breaking authenti-
cation in TLS, IKE, and SSH,” In: The 23nd Annual Network and Distributed
System Security Symposium 2016 (NDSS 2016).

	 4	 Yoshida M. and Obana S., “On the (in) efficiency of non-interactive secure
multiparty computation,” In: The 19th Annual International Conference on
Information Security and Cryptology (ICISC 2015), LNCS, vol.9558, pp.185–
193, Springer, Heidelberg, 2016.

	 5	 Yoshida M., Suzuki I., and Fujiwara T., “A symbolic model for an externalized
universally composable framework,” JSIAM Spring Conference 2014, Formal
Approach to Information Security (FAIS), 2014.

	 6	 Yao A.C., “Protocols for secure computations,” In: The 23rd Annual Symposium
on Foundations of Computer Science (FOCS '82), pp.160–164, 1982.

	 7	 Chaum D., Crèpeau C., and Damgård I., “Multiparty unconditionally secure
protocols,” In: The 20th Annual ACM Symposium on Theory of Computing
(STOC '88), pp.11–19, 1988.

	 8	 Hirt M. and Maurer U., “Player simulation and general adversary structures in
perfect multiparty computation,” In: Journal of Cryptology, 13(1), pp.31–60,
Springer, Heidelberg, 2000.

	 9	 Beimel A., Ishai Y., Kushilevitz E., Meldgaard S., and Paskin-Cherniavsky A.,
“Non-interactive secure multiparty computation,” In: The 34th Annual
International Cryptology Conference (CRYPTO 2014), LNCS, vol.8617,
pp.387–404, Springer, Heidelberg, 2014.

	10	 Canetti R. and Herzog J., “Universally composable symbolic analysis of mu-
tual authentication and key-exchange protocols,” In: The Third Theory of
Cryptology Conference (TCC 2006), LNCS, vol.3876, pp.380–403, Springer,
Heidelberg, 2006.

	11	 Canetti R., “Universally composable security: A new paradigm for crypto-
graphic protocols,” In: The 42nd Annual Symposium on Foundations of
Computer Science (FOCS 2001), pp.136–145, IEEE Computer Society, 2001.

	12	 Dahl M. and Damgård I., “Universally composable symbolic analysis for two-
party protocols based on homomorphic encryption,” In: The 33rd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques (Eurocrypt 2014), LNCS, vol.8441, pp.695–712, Springer, Heidelberg,
2014.

	13	 Canetti R. and Rabin T., “Universal composition with joint state,” In: The 23rd
Annual International Cryptology Conference (CRYPTO 2003), LNCS, vol.2729,
pp.265–281, Springer, Heidelberg, 2003.

	14	 Canetti R., Dodis Y., Pass R., and Walfish S., “Universally composable security
with global setup,” In: The Fourth Theory of Cryptology Conference (TCC
2007), LNCS, vol.4392, pp.61–85, Springer, Heidelberg, 2007.

Maki YOSHIDA, Ph.D.
Senior Researcher, Security Fundamentals
Laboratory, Cybersecurity Research Institute
Information Security, Cryptography,
Information Hiding

184　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-06-07.indd　p184　2017/03/15/ 水 09:17:21

6 Security Architecture Techniques

