
1 Introduction

Cryptographic protocols are designed to achieve vari-
ous security goals, such as data confidentiality and entity 
authentication, even when the communication takes place 
over unsecure networks. In recent years, critical vulnera-
bilities in protocol specifications have been frequently re-
ported [1]–[3]. For example, on 14th of October 2014, 
Google researchers announced a new vulnerability in SSLv3 
(Secure Socket Layer version 3.0) that allows man-in-the-
middle attackers to obtain clear text data, aka the 
“POODLE” attack [1]. For early detection of such vulner-
abilities in protocol specifications, the development of 
analysis methods is in urgent need.

 There exist two approaches for analyzing the security 
of cryptographic protocols, known as the manual (or the 
cryptographic) approach and the formal (or the symbolic) 
approach. In both approaches, it is assumed that the used 
cryptographic primitives are secure. The central features of 
the manual approach are detailed models for various types 
of cryptographic protocols and attackers in the crypto-
graphic model. From these features, the resulting security 
proofs offer powerful security guarantees. A serious draw-
back of this approach is that proofs become more difficult, 
tedious, and error-prone if we try to analyze more complex 
protocols against powerful attackers. In contrast, the formal 
approach that abstracts the details about the protocol 
specifications and environments in the symbolic model 
leads to considerably simpler proofs, and can benefit from 
machine support. However, it has been proved that no 
general formal method that analyzes the security for all 
possible cryptographic protocols exists. These advantages 

and drawbacks make it important to devise various meth-
ods through both approaches for successful analysis.

 This report presents our main contributions on proto-
col analysis in the two approaches — proof of powerful 
security [4] and abstraction for automated analysis [5]. In 
[4], through the manual approach, we derived a lower 
bound on the communication complexity of an arbitrary 
cryptographic protocol that realizes non-interactive secure 
multi-party computation. This bound clarifies the limit of 
efficiency, and further provides a criterion for security 
analysis because any secure protocol cannot exceed this 
bound. If the communication complexity exceeds the 
bound, we can conclude that the protocol is vulnerable. 
Then, we presented an efficient construction of secure 
protocols, which shows an upper bound on the communi-
cation complexity. In [5], we improved the previous formal 
approach and presented an abstraction method that guar-
antees exhaustive detection of attacks against a specific 
class of cryptographic protocols that use public-key cryp-
tosystems. Although being applicable to a limited class of 
cryptographic protocols, the global share of public keys 
such as the public key infrastructure is allowed. This con-
tributes to automated analysis for practical environments.

 The rest of this report is organized as follows. Section 2 
shows the derived lower and upper bounds on the com-
munication complexity of cryptographic protocols for 
non-interactive secure multiparty computation in [4]. 
Section 3 presents an overview of the improved formal 
approach and abstraction method in [5]. Finally, Section 4 
concludes this report.
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2 Cryptographic analysis

 Secure multi-party computation (MPC) aims to enable 
multiple players to co-operatively compute various func-
tions in the presence of adversaries. MPC was first intro-
duced by Yao [6] and because of its importance in 
cryptography, there have been presented many variants so 
far [7]–[9]. We consider non-interactive MPC (NIMPC) 
against honest-but-curious adversaries in the information-
theoretic setting, which was introduced by Beimel et al. 
in [9]. 

2.1	 Non-interactive secure multi-party 
computation 

We recall the notations and definitions of NIMPC in-
troduced in [9]. Let  be the number of players and 

  . Let   , 
and 	Ω   be finite domains. Let    be a family of functions
��� �� � ��� → Ω  . An NIMPC protocol for    is a triplet 

   where
z a randomness generation function 

   given a description of a function 
   generates    correlated random inputs    

with   ,
z a local encoding function    takes 

an input    and the correlated random input 
   and outputs a message ,

z a decoding algorithm ������ � ���� ⟶ Ω  
reconstructs ������ � ��� ∈ Ω   from the    messages 
	�� � ��	  	with   .

An NIMPC protocol is also described in the language of 
protocols. Such a protocol involves    players, each holding 
an input   , and an external “output server” with no 

input (see Fig.　1). For an NIMPC protocol 
   for a class of functions   , 

let    denote the protocol that may have an additional 
input, a function   , and proceeds as follow. 
z Offline preprocessing: Each player    receives 

the random input    where ���, … , ��� ←
.

z Online messages: On the random input   , 
each player    sends the message 

   to the output server.
z Output: The output server computes and outputs 

  .
The communication complexity is evaluated by the 
summation of log�|��|, … , log�|��|,  , and that of 
log�|��|, … , log�|��|  . 

The requirements for an NIMPC protocol 
   are defined as follows. 

z Correctness: We say that Π   is correct if the output 
server outputs the value    with probabil-
ity 1. Specifically, for any   ,    with   , 
and   , 
�������, ���� � ����, … , ��� . 

z Robustness: For a subset   , we say that Π   is 
  -robust if the corrupted players    and the output 

server can simulate their view of the protocol (i.e., the 
random inputs    and the messages  ) 
given oracle access to the function    restricted by 
the other inputs    (see Fig. 2). We say that 
Π   is fully robust (or simply refer to Π   as an NIMPC 
protocol for   ) if Π   is   -robust for every    
of size   . 

Fig.F 1　An NIMPC protocol Π for H

Output server

h�x1,...,xn�∈Ω

Player nPlayer 1x1∈X1 xn∈Xn
・・・

GEN

h	∈H

m1∈M1 mn∈Mn

r1∈R1 rn∈Rn

・・・

・・・

ENC1 ENCn

DEC

Generation of the random inputs

Generation of the messages

Computation of the output value

1. Offline preprocessing

2. Online messages

3. Output

180　　　Journal of the National Institute of Information and Communications Technology   Vol. 63 No. 2 (2016)

Title:J2016S-06-07.indd　p180　2017/03/15/ 水 09:17:21

6 Security Architecture Techniques



2.2 Lower and upper bounds on the 
communication complexity and its application 
to security analysis

We derived a lower bound on the communication 
complexity of every fully robust NIMPC protocol Π   for an 
arbitrary class of functions   . If the communication 
complexity of a protocol exceeds the bound, then we can 
see that the protocol is not fully robust and leaks some 
information on the function or inputs. The communication 
complexity is bounded by the size of target class. More 
specifically, the communication complexity cannot be 
smaller than the logarithm of the size of the target class 
log� ���  . Thus, we have a larger communication complex-
ity if we allow a larger number of functions to be evalu-
ated. Our technique for deriving lower bounds is quite 
simple and useful for approximating the amount of com-
munication. For the target class of functions   , we first 
assume the existence of a correct NIMPC protocol ��Π�   
with some communication complexity    and show a 
method for a server to send data to a client by encoding 

data � � �1,… , |�|�   into a function    and evaluating 
the function (see Fig. 3). Thus, the communication com-
plexity    is bounded by the description length of . If the 
assumed communication complexity is smaller than the 
logarithm of the size of the target class, i.e.,   , 
then the contradiction is implied. Thus, it holds that 

  , and the communication complexity is lower 
bounded by log� ���  . We note that this lower bound is 
common to both information theoretically secure protocols 
and computationally secure ones because the proof only 
depend on the correctness. 

Table 1 shows the communication complexity for two 
major classes of functions (the arbitrary functions and the 
indicator functions). An indicator function is the function 
defined to be identically one on a specific input, and is zero 
elsewhere. An arbitrary function is represented by the sum 
of indicator functions. For the class of indicator functions 
whose number equals to that of possible inputs   , the 
communication complexity is lower bounded by the input 
length log� ���  . For the class of arbitrary functions with 

Fig.F 2　T-robustness of NIMPC protocol Π for H

Fig.F 3　Data transmission using an NIMPC protocol
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  -bit output, the lower bound is   . However, there 
is an exponential gap between the derived lower bound and 
the previous construction in [9]. 

We then reduced the gap between the lower and upper 
bounds to quadratic in the input length by presenting a 
more efficient construction of an NIMPC protocol for the 
indicator functions in [4].

3 Symbolic analysis 

We improve the formal approach proposed by Canetti 
and Herzog in [11], called the universally composable 
symbolic analysis, and present a method to abstract cryp-
tographic protocols that share keys via Public-Key 
Infrastructure (PKI).

3.1 Improving the universally composable 
symbolic analysis approach

In [11], Canetti and Herzog have proposed the follow-
ing approach.  
z Using the universal composition framework (UC): 

The UC framework [10] provides a general way for 
specifying the security requirements of crypto-
graphic tasks and asserting whether a given protocol 
realizes the specification. A salient property of this 

framework is that it provides strong composability 
guarantees: a protocol that realizes the specification 
in isolation continues to realize the specification 
regardless of the activity in the rest of the network. 
Thus, it is enough to abstract a single session of the 
isolated protocol. 

z Proving the computational soundness of the ab-
stracted (symbolic) model: The computational 
soundness here means that if the adversary in the 
UC setting can do nothing, then the abstracted, 
symbolic adversary cannot also do (except with 
negligible probability). This allows us to apply an 
automated symbolic method to security analysis. 

The UC framework used by the previous work in [11], 
[12] is UC with Joint State (JUC) [13]. The JUC framework 
provides a means to deduce the security of the multi-session 
case from the security of a single session, even when some 
joint state is used by each protocol (e.g., the protocol-private 
keys) as shown in the right side of Fig. 4. However, this 
framework is not suitable for real-world protocols in the 
Internet where keys are used by multiple protocols such as 
various versions of TLS. 

In this work, to consider an execution of protocols in 
a setting involving a global setup (e.g., PKI) where keys are 
shared among multi-sessions of an arbitrary protocol, we 
use Externalized UC (EUC) [14] that provides the compo-
sition guarantee even when the same computational entity 
is used as a subroutine within multiple protocols as shown 
in the left side of Fig. 4. 

To present the computationally sound abstraction in 
the EUC framework, we first define syntax and semantics 
of target protocols, called simple protocols, in both EUC 
framework (concrete model) and symbolic model (Fig. 5) 
We then define the trace of an execution of a simple pro-
tocol within the EUC framework. The trace provides a 
global view of the execution, consisting of a sequence of 

Fig.F 4　Differences of the UC framework between this work and the previous work  
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input, outputs, messages, and local variables (represented 
in bit-strings). It also contains the participants’ calls to the 
shared functionality, thus capturing the global use of keys. 
In a similar way, we define the trace of an execution of a 
symbolic protocol within the symbolic model. Again, the 
trace represents a global view of the (now symbolic) execu-
tion. Here, the trace consists of a sequence of expressions 
from the underlying symbolic algebra. Next, we define a 
trace mapping which translates a trace of a concrete simple 
protocol into a symbolic trace. Finally, we show that this 
mapping provides soundness to trace properties in the 
symbolic protocol. That is, the trace mapping almost always 
(except for negligible probability) translates a trace of a 
concrete simple protocol to a valid trace of the correspond-
ing symbolic protocol. The term “valid” here means that 
the trace could have been produced by the symbolic pro-
tocol. From this mapping lemma, if there is no attack in 
any symbolic trace, then we conclude the original concrete 
protocol is secure. 

3.2	 Overview of our computationally sound 
symbolic model

The central part in our abstraction is the mapping 
lemma that establishes a correspondence between execu-
tions of concrete simple protocols and executions of the 
corresponding symbolic protocols. 

In the symbolic model that we use for abstracting 
protocols, messages are represented as compound elements 

in some symbolic algebra. That is, each compound element 
represents a “parse tree,” or a sequence of operations 
needed to obtain the composite symbol from atomic sym-
bols. The atomic symbols are used to represent primitive 
structures such as party identifiers, messages, random 
nonces, cryptographic operations, and their keys denoted 
by   , and so on. 
The compound elements of the algebra (those messages 
produced by the operations with keys) represent those 
messages that encrypt or sign primitive messages such as 

  . 
A symbolic trace is a sequence of events, and a trace is 

valid for a protocol if the messages delivered by the adver-
sary to the participants are consistent with the adversary’s 
computations, and the messages sent by participants are 
consistent with the messages received and the protocol. The 
symbolic adversary can deduce new messages from the 
initial messages and the messages generated by parties 
running the protocol. The adversary operations are ex-
tremely limited. Specifically, the adversary cannot perform 
any operations other than the symbolic ones such as con-
catenate messages, decompose elements of a message, en-
crypt a message with a given public key, or decrypt a 
given symbolic ciphertext if the corresponding secret key 
is corrupted. 

The translation of a concrete message to a symbolic one 
requires knowledge of events that occur in the trace. The 
previous work based on the JUC framework [11][12] 

Fig.F 5　An abstraction method to guarantee the computational soundness of a symbolic model
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concentrates on a restricted class of protocols that use no 
cryptographic primitives other than JUC-secure public-key 
encryption. In conjunction with the treatment of joint state, 
the use of public-key encryption is modeled as interaction 
with an ideal functionality. Thus, by observing all calls to 
the ideal functionality, we can define the mapping function 
from concrete messages/ciphertexts to symbolic messages/
ciphertexts. The ciphertexts generated by the adversary in 
local are considered as “invalid” and mapped to a special 
symbol called the “garbage” symbol. 

In contrast, in this work based on the EUC framework, 
we cannot model cryptographic primitives as ideal func-
tionalities because no EUC-secure cryptographic primitives 
such as public-key encryption and digital signature have 
been known. Thus, we need to develop a new method to 
map concrete messages to symbolic ones. 

Our method is to observe all calls to the shared func-
tionality, which models PKI. We use the keys generated by 
the shared functionality to check the validity of ciphertexts 
and signatures. If a ciphertext (resp., a signature) is de-
crypted (resp., verified) by a valid key, then it is mapped 
to a corresponding symbolic message, otherwise, the 
“garbage” symbol. In this way, even if the used crypto-
graphic primitives are not EUC-secure, we success to es-
tablish a correspondence between two models in a proof 
of the mapping lemma, and guarantee the computational 
soundness of the symbolic model. 

4	 Conclusion

In this report, we presented essential parts of our 
contributions on protocol analysis in [4][5]. The first result 
we report here is the characterization of the common 
feature of NIMPC protocols. We derived a lower bound on 
the communication complexity, which can be used for 
security analysis. The second is a formalization of PKI-
based cryptographic protocols to automatically analyze the 
security. 

The conventional analysis methods assume the security 
of used cryptographic primitives. However, recent vulner-
abilities such as the Logjam attack in May 2015 [2] and the 
SLOTH attack in Jan. 2016 [3] allow man-in-the-middle 
attackers to use “export-grade” weak cipher suits in TLS 
(Transport Layer Security). Thus, a possible future work is 
to develop analysis methods that include such attack 
methodologies. 
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