
1 Introduction

Public key cryptosystems are fundamental technology 
widely used for supporting the information society. Typical 
examples of public key cryptosystems are RSA cryptogra-
phy and elliptic curve cryptography. The security of public 
key cryptosystems is based on the difficulty to solve certain 
mathematical problems. For example, in elliptic curve 
cryptography, a cyclic group assigned by an elliptic curve 
is used, and if an elliptic curve discrete logarithm problem 
(ECDLP) over the cyclic group is solved, the elliptic curve 
cryptography can be deciphered. Therefore, for public key 
cryptosystems to operate safely, secure cryptography pa-
rameters (key length, etc.) must be estimated through de-
ciphering experiments. Research institutes across the world 
are conducting research on the various mathematical 
problems associated with the security of public key cryp-
tosystems. This paper describes the security evaluation of 
pairing-based and lattice-based cryptography.

Pairing-based cryptography is one of the public key 
cryptosystems currently being studied for practical applica-
tion. High-performance cryptographic techniques that are 
difficult to implement in RSA cryptography and elliptic 
curve cryptography can be implemented using pairing-
based cryptography. As an example of pairing-based 
cryptography, searchable encryption is explained in simple 
terms. In searchable encryption, the data and keywords can 
be searched while they are encrypted, so it is suitable for 
saving enciphered data on a server. It is suitable as a 
countermeasure against information leakage, and hence it 
is expected that pairing-based cryptography can be practi-

cally applied as a cryptosystem suitable for privacy protec-
tion. For pairing-based cryptography, the security is based 
on the difficulty of the calculations involved for solving 
ECDLP for an elliptic curve, and discrete logarithm prob-
lems over finite fields, so the size of the finite field used is 
an important element for determining the difficulty of the 
calculation. Also, the characteristics of the finite field are 
important factors for determining the security and process-
ing speed of pairing-based cryptography. This paper de-
scribes the case where the characteristic is 3, which has 
been most reported in the research findings of high speed 
implementation. The technique for solving discrete loga-
rithm problems over finite field GF (36･97) and its numeri-
cal experiment[1][2] are explained in concrete terms in 
Section 2.

This paragraph outlines the security estimation of the 
lattice-based cryptography. From the viewpoint of long-
term usage of a system, implementing quantum-resilient 
cryptosystems, that is, cryptography and practical systems 
which can keep secure against attacks by quantum comput-
ers, has been attracted. As mentioned above, RSA and el-
liptic curve cryptography, which are widely used around 
the world, can be broken by using quantum computers. On 
the other hand, lattice-based cryptography is a candidate 
for quantum-resilient cryptography. Furthermore, this kind 
of cryptography has many applications, represented by the 
realization of fully homomorphic encryption. This paper 
provides an overview of lattice-based attacks, which is a 
standard method for evaluating the security of lattice-based 
cryptography, and describes the evaluation of the LWE 
problem[3].
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2 Security evaluation of pairing-based 
cryptography

In pairing-based cryptography that uses ηT pairing, a 
finite field GF (36n) where n is assumed to be a prime 
number is used. Function Field Sieve (FFS) is known as an 
algorithm for efficiently solving discrete logarithm prob-
lems over such finite fields of small characteristics. This 
paper focuses on discrete logarithm problems over GF 
(36･97), and describes an improved FFS that is suitable for 
solving such discrete logarithm problems, and the nu-
merical experiment that used FFS.

2.1 Summary of function field sieve
It is known that the Function Field Sieve (JL06-FFS)[4] 

proposed by Joux and Lercier in 2006 is an efficient logarithm 
for solving discrete logarithm problems over GF(36n), where 
the extension degree n is 509 or less[5]. This section provides 
a summary when computing the solution X = logT of the 
discrete logarithm problem 

 

   over a finite field GF 
(36n) using JL06-FFS. This function field sieve is comprised 
of the following four computation phases: polynomial selec-
tion phase, relation finding phase, linear algebra phase, and 
individual discrete logarithm phase.

Polynomial selection phase: First, k∈{1,2,3,6}  is se-
lected, and the bivariate polynomial H(x,y)     ∈GF3k[x,y] 
that satisfies the eight conditions[6] proposed by Adleman 
is determined. However, for the assigned integer dH, we set 

 

deg	�� � 	��  . Also, for the assigned natural number dm, 
the polynomial m∈GF3k[x]     with degree dm is generated 
randomly, and a monic and irreducible polynomial 
f ∈GF(3k)[x] that satisfies the following conditions is 
calculated:

 

������ ≡ 0�������� ���� � ����  .
Here, the finite field GF(36n) is expressed by 
GF(3k)[x]/(f) and there is a surjective homomorphism ξ 
from GF(3k)[x,y]/(H) to GF(3k)[x]/(f), such that 
ξ (y) =m. Next, for the assigned natural number B, the 
two factor bases FR(B) and FA(B) are determined as follows:

 

����� � �� � ���3������ ��� � � �� ����������������������������   
 .

However, Div (GF(3k)[x, y]/(H)) is considered as the 
divisor group of GF(3k)[x, y]/(H), and <p, y-t> is the divi-
sor generated by p and y-t.

In this way, the initial values of the function field sieve 
in the polynomial selection phase are set. The computation 
time is so short that it can be ignored.

Relation finding phase: For the two assigned natural 
numbers R and S, we compute a sufficient number of pairs 
(r, s) ∈ (GF(3k)[x])2 satisfying the following conditions:

 

   (1)

 

�� � � � ∏ ������������ ,   (2)

 

����������� � �⁄ � � ∏ ������������������� .   (3)

However, ai,bj shall be non-negative integers. Let h be the 
class number of GF(3^k)(x)[y](H), and we assume that h 
is coprime to (3^6n-1)(3^k-1) . At this time, the following 
congruence expression holds for (r,s) that satisfies the 
conditions from (1) to (3):

 

∑ �� ��� ���������� ≡ ∑ �� ��� ����������������� ����������� � ������ � ���  . (4)

However, it shall be σi = ξ(tj)1/h, 〈tj〉 = h〈pj, y-tj〉. The 
congruence expression (4) is called a relation.

Linear algebra phase: The linear equation is provided 
from a large number of the relations obtained in the rela-
tion finding phase. In the linear algebra phase, this linear 
equation is solved using the Lanczos method, etc., and the 
discrete logarithms of elements in factor base are obtained:

 

��� �� � � � ��� ������� � ��� �� � � � ��� �������.  

Individual discrete logarithm phase: In this phase, the 
discrete logarithms of elements in factor base are corre-
lated with the solution logT of the given discrete logarithm 
problem. In other words, the integers Ai, Bj that satisfy the 
following are derived using special-Q descent, etc.:

 

��� � � ∑ �� ��� ���������� � ∑ �� ��� ��〈�������〉������ ������������ � ������ � ���  ．

2.2 Problem setting and parameter setting of FFS
From the point of view of evaluating the security of 

pairing-based cryptography, this paper discusses a multi-
plicative subgroup of GF (36.97) wherein the order is 151-bit 
prime factor P151. Also, the value reported in[7] is intro-
duced for the initial value of the parameter when such 
discrete algorithm problems are solved by the function field 
sieve based on JL06-FFS. However, regarding the value of 
k, in our implementations, the respective calculation ex-
periments were conducted with k=3, 6, and k=3 was se-
lected from the result as it was considered suitable. As a 
result, the following was set for the parameters described 
in Subsection 2.1:
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2.3 Improvements for function field sieve
This section describes the improvements for the func-

tion field sieve, introduced for solving discrete logarithm 
problems over GF (36⋅97). For more details, see[1][2].

SIMD implementation of sieving: In order to check 
whether a certain (r, s) satisfies equations (2) and (3), na-
ively, the polynomials of the left-hand side of equations (2) 
and (3) should be factorized. However, since polynomial 
factorization is relatively expensive, pre-processing called 
“sieving” is employed to reduce the overall cost of the 
relation finding phase. In this case, sieving is done for 
all (r, s), then for the remaining (r, s), whose polynomials 
are expected to satisfy equations (2) and (3) with a 
high probability, polynomial factorization is done to 
obtain the relations. To describe the sieving, let us take 
equation (2) as an example. When rm+s is divisible 
by ρj, then 

 

  . Hence, for fixed r, 

 

� � �� � ������ � ���3������  , where s_0≡-rm (mod ρ_j), 
it satisfies 

 

  . Due to this fact, doing the 
above calculation for a sufficient number of ρ_j∈F_R(B) to 
collect information about the divisibility of rm + s by ρ_j, 
one can check whether equation (2) holds for (r, s) without 
polynomial factorization. This can also be done for equa-
tion (3).

Based on the parameter (B,R,S) = (6,6,6), the degree 
of polynomial GF(33)[x] appearing in sieving is at most 6. 
Also, the calculation of -rm(mod ρ_j) can be done by 
computing mod ρj after multiplication by x in GF(33)[x] 
progressively. Therefore, for sieving, it is sufficient to rep-
resent degree-7 polynomials in GF(33)[x]. The Single 
Instruction Multiple Data (SIMD) approach is suitable for 
many such small targets. Figure 1 shows the data represen-
tation in our SIMD sieving. In this representation, GF(3) 
is represented by 2 bits (h,l)∈GF(2)^2, and GF(3) opera-
tions can be described by bitwise operations (at least six 

operations are necessary[8]). GF(33) is represented as 
GF(3)[ω]/(ω3－ω－1), and the multiplication by x in 
GF(33)[x] can be described by left logical shift, and divi-
sion by x in GF(33)[x] can be described by right logical 
shift. By this representation, at most, 16 polynomials in 
GF(33)[x] can be processed simultaneously.

Reducing variables by Frobenius map and Montgomery 
multiplication: In the linear algebra phase, the algorithms 
for solving the linear equations, e.g., the Lanczos method, 
requires O(N^ϵ)(2< ϵ ≤3) modular multiplications for N 
variables. Hence, the complexity can be reduced by reduc-
ing the variables. Using the Frobenius map is an approach 
to reduce the variables[4][5]. For example, if an element ρ_i 
of factor base is mapped to another element ρ_j of factor 
base by the Frobenius map ϕ, then ρj=ρi(3(972))=ϕ(ρi). 
Therefore,

 

log��� ≡ 3��� log�������o�������  

and so logρj can be removed from the linear equations. 
The variables can be reduced by this approach, but the 
coefficient will increase to approximately P 151 (originally, 
all the coefficients of equation (4) are exponents of the 
right-hand side of equations (2) and (3), so the size is at 
most several tens), by multiplying by 3972 (mod P151). 
Therefore, the complexity of modular multiplication will 
increase significantly. To reduce this increasing complexity, 
we introduce Montgomery multiplication for modular 
multiplication.

For an integer A=2^k (k is commonly selected as the 
word length of CPU) which is coprime to the prime num-
ber P15, map each coefficient of linear equations to AZP151 
by the map
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Fig.F 1　SIMD representation for sieving
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then the modular multiplication is performed by 
Montgomery multiplication 

 

  .
In Montgomery multiplication, since the modulo op-

eration can be replaced by multiplications and logical 
shifts, the modular multiplication can be computed effi-
ciently.

2.4 Experiment results
The experiment results are explained for each phase.

Relation finding phase: There were in all 187,602,242 
relations (used factor bases were 134,697,663) obtained 
from sieving. Among these, 33,786,299 are free relations, 
which is a trivial relation obtained without sieving. These 
computations can be done in 53.1 days using 212 CPU 
cores, but the actual time taken was 118 days (including 
interruptions due to planned power outages and code 
improvements). The computation started on May 14, 2011, 
and finished on September 9, 2011.

Liner algebra phase: For a linear system with 
187,602,242 equations and 134,697,663 variables, firstly the 
Frobenius map approach was taken to reduce the variables, 
and the number of variables was reduced to 45,059,572. 
Then, pre-processing called “filtering” was carried out, and 
the number of equations and variables were reduced to 
6,141,443 and 6,121,440, respectively. This linear system 
was solved using the parallel Lanczos method. This com-
putation can be done in 80.1 days using 252 CPU cores, 
but the actual time taken was 90 days. The computation 
started on January 16, 2012, and finished on April 14, 2012.

Individual logarithm phase: In order to obtain a linear 
relation between the given discrete logarithm problem and 
discrete logarithms of factor bases, the computation was 
done using 168 CPU cores, and the actual time taken was 
15 days. The computation started on February 3, 2012, and 
finished on February 28, 2012. The computation of this 
phase can be done independently of the linear algebra 
phase, so the computations were done using another 
server during the linear algebra phase.

After the linear algebra phase was completed, the 
computation of the discrete logarithm problem and its 
verification were completed on April 24, 2012. That is, the 
computation of the discrete logarithm in the subgroup of 

 

GF�3�����   where the order is 

 

   was successful. For the 
actual solution and the script for its verification, refer to[2].

3 Security estimation of lattice-based 
cryptography

The security of lattice-based cryptography is based on 
some types of lattice point search problems of lattice vec-
tors. For example, the shortest vector problem to find a 
non-zero lattice point closest to the origin, the closest 
vector problem to find a lattice point closest to the target 
point, and the Learning With Errors (LWE) problem, have 
been investigated. In order to use such cryptography in the 
real world, appropriate setting of parameters such as key 
length is necessary. For this purpose, the relationship be-
tween the cryptographic parameter and the attacking time 
needs to be known to find secret information. Moreover, 
the cryptosystems used in the real world must have robust 
parameters, which means that finding secret data without 
a legitimate key is impossible in realistic time and equip-
ment. In order to propose such parameters, not only ex-
periments for attacking in small parameters but also 
simulation for large parameters are necessary. This section 
gives a brief outline on lattice-based attacks, which are a 
standard technique for analyzing lattice vector search 
problems, and as an example, gives an analysis for the LWE 
problem.

3.1 Outline of lattice-based attacks
In lattice-based cryptography, a problem that recovers 

secret information from the public data without a legitimate 
key can be converted into a lattice point search problem in 
general. That is, there is a lattice basis 

 

   
that corresponds to the public information and a specific 
lattice point derives the secret information. The lattice-
based attack has two steps which consist of employing a 
lattice basis reduction algorithm and a lattice vector search 
algorithm. In the former lattice basis reduction step, we use 
a single lattice basis reduction algorithm or combination of 
such algorithms, such as the LLL algorithm, the BKZ algo-
rithm, etc. By lattice basis reduction, the computational 
time of the latter step is reduced. Hence, there is a trade-off 
relation of computational time between the two steps.

Lattice point search algorithm: As a simple example, 
we introduce the ENUM algorithm[9] for searching for the 
shortest vector in a lattice. The algorithm computes the 
Gram-Schmidt basis 

 

���∗� � � ��∗ �   of the input basis 

 

  , and performs depth-first search for the follow-
ing tree:
z Each node is labeled by a lattice vector. Particularly, 

the root node has the zero vector.
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z Each depth-k node has the vector 

 

� � ∑ ������������     
(

 

  ) and its children are labeled by vectors 
of the form 

 

   (

 

  ).
The depth of the tree is the same as the dimension of 

lattice n, and each leaf corresponds to a lattice point. In 
order to limit the searching range, in each depth k, the 
algorithm prunes the nodes when the projective length 
¦

 

  ¦ of the corresponding vector ν is larger than a 
threshold c. Here, c is the parameter to set the searching 
radius. This algorithm can enumerate all lattice vectors 
shorter than c.

 When one wants to find the shortest vector of a given 
lattice, set 

 

� � �����|��|� � � |��|�   and execute the above 
algorithm. If vectors are found, the solution is the shortest 
among the found vectors. Otherwise, that is, if no vector 
has been found, the shortest vector among the lattice basis 
(b1, …, bn) is the desired vector.

Complexity of lattice point search algorithm: It is 
known that the computational complexity of the above 
searching algorithm is accurately approximated by the 
following formula[10]:

N=

 

	∑ �����
∏ |��∗|��������

����   . (5)

Here, V_i(c) is the volume of an i dimensional sphere of 
radius c. Hence, the complexity of lattice point search can 
be predicted by only the searching radius and the lengths 
(

 

|��∗|� � � |��∗ |  ) of the Gram-Schmidt basis. By the shape of 
the formula, decreasing 

 

|��∗|   of the latter indexes, the 
complexity can decrease. Note that this corresponds to 
reducing 

 

|��∗|   of the first indexes since the lattice volume 

 

∏ |��∗|����    is an invariant.

Lattice basis reduction algorithm: Performing a lattice 
reduction algorithm, the computational cost of lattice point 
search (5) can be decreased. In this section, we introduce 
the BKZ algorithm which is usually used for analyzing 
lattice-based cryptography.

The algorithm has the blocksize parameter β besides 
the input lattice basis B and performs the following basic 
operations for i=1,2,… successively: for the projective 
sublattice 

 

   of dimension β, 
find the shortest vector and update the basis by using it. 
Remark that if i+β-1 exceeds n, replace the blocksize β as 
the suitable one, i.e., β=n-i+1. The vector found by the 
ENUM subroutine satisfies 

 

|�����| � |������| � |��∗|  . 
Thus, the updated 

 

|��∗|   at index i is smaller than or equal 
to the previous one, which means that the latter elements 

become large and the complexity (5) can be smaller than 
before. After the process for i=n-1 is finished, return the 
index i to one. Repeating this reduction process, the com-
plexity (5) is decreasing little by little. The algorithm ter-
minates when 

 

��∗   is the shortest vector of 

 

   for all 
i. Since it calls the ENUM algorithm a “subroutine,” a 
reasonable complexity estimation is possible.

This is an outline of the original version of the BKZ 
algorithm by Schnorr and Euchner[11], and several im-
proving techniques are proposed. For example, in order to 
reduce the computational cost, abort the algorithm when the 
first vector is short enough for a considered problem[12], 
or use the searching radius c as the Gaussian-Heuristic 
which is known as the expected length of the shortest 
vector[13].

3.2 Simulation of lattice-based attacks
 In order to estimate the complexity of attacking lattice 

based cryptography, the computational time of both the 
lattice basis reduction and lattice point search need to be 
simulated. As mentioned above, the complexity of lattice 
point search can be predicted by using the Gram-Schmidt 
basis lengths (

 

|��∗|� � � |��∗|  ) of the output of lattice basis 
reduction. Thus, our goal is to give a precise simulator to 
give the computation time and Gram-Schmidt lengths of 
the output of the lattice basis reduction algorithm with 
several parameters. The security estimation under this 
lattice-based model can be obtained by the lowest of the 
sum of simulated time for the lattice basis reduction and 
lattice point search among the parameters.

The simulation for output (

 

|��∗|� � � |��∗ |  ) is performed 
by the BKZ simulator[13]. Below, the simulated value of 

 

|��∗|   is denoted by 

 

ℓ   , and in each index i of the BKZ 
algorithm. It is known that the length of the shortest vec-
tor of projective sublattice 

 

   found by the ENUM 
subroutine can be simulated by the Gaussian-Heuristic 

 

  .

Substituting the simulating value 

 

��������������� � ∏ ℓ�
�����
���   

of the volume of projective sublattice, the updated value of 

 

|��∗|   can be simulated. Write the new value as 

 

ℓ   . 
Since the volume of the sublattice is invariant during this 
process, the updated |����∗ |  can also be replaced by 

 

ℓ� ∙
ℓ�

ℓ�����
  .

 
This is a simulation of the process for one

 
index i.
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As the real BKZ algorithm, executing the process for 

 

  , the Gram-Schmidt lengths of output basis 
can be simulated, and the complexity of the algorithm is 
the sum of computational time of the ENUM algorithm 
overall.

3.3 Simulation of lattice-based attacks for the 
LWE problem

The LWE problem with the parameter set (n,m,q,s) is 
formulated as follows. From the input random matrix 

 

   and the vector b, the goal is to find the error 
vector e and the secret vector s computed by 

 

  . (6)
Here, s is randomly sampled from 

 

  , and each coor-
dinate of e is independently sampled from the discrete 
Gaussian distribution of variance 

 

s   . In order to estimate 
the complexity of this problem, convert the (A,b) to a 
lattice vector search problem. Rewriting formula (6) by 
using an integer vector w as

 

  =

 

  =

 

  .

Hence, the secret vector s can be derived from the closest 
vector of b in the lattice defined by the columns of the 
matrix [A qI]. As mentioned in the above sections, the 
attacking time can be predicted by simulating the Gram-
Schmidt lengths (

 

|��∗|� � � |��∗ |  ) after lattice basis reduction 
for the lattice and simulating the time of lattice point 
search.

3.4 Improvements of the lattice point search
In order to estimate the complexity of the LWE prob-

lem[3], we proposed the improvement of the lattice point 
search algorithm as follows. By using the property of dis-
crete Gaussian distribution, the condition for alive in depth 
k is changed as

 

  . (7)

In other words, the node that does not satisfy this is 
pruned. To reduce the total complexity, we tried to narrow 
the range[Lk, Rk]. The computational complexity of lattice 
point search in this setting is approximated by

N=

 

	∑ �����
∏ |��∗|��������

����    .

Here, 

 

   is the k dimensional object

 

����� � � ��� ∶ 	 �� � �12 � �� ��2 � ���  

defined by the searching condition (7). Refer to [3] for 
details on the algorithm. Figure 2 shows a graph of bit 

security for typical parameters.

4 Summary and future directions

The security of pairing-based cryptography is based on 
the difficulty to solve discrete logarithm problems for finite 
fields, and we have proposed a method for efficiently solv-
ing these problems. Using this method, we succeeded in 
solving discrete logarithm problems over a finite field 

 

GF�3�����  , by implementing and performing experiments. 
Also, by using the properties of discrete Gaussian distribu-
tions which are not used in previous works, we improved 
the lattice point search and sped up the attack for LWE. 
These results are used to propose secure cryptographic 
parameters. In this laboratory, we continue working to 
improve the computation method for solving problems 
related to discrete logarithm problems and lattices, and are 
continuing with research and development on other math-
ematical problems related to the security evaluation of 
cryptography.
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