
1	 Introduction

With the development of data mining techniques, 
various new businesses based on big data analysis have 
appeared. This includes data containing private informa-
tion, and the data must be analyzed while preserving pri-
vacy. One way to do this is by using “homomorphic 
encryption.” In homomorphic encryption, various calcula-
tions can be performed on the encrypted data itself, so it 
is possible to do statistical analysis on the encrypted data, 
and only a person holding the decryption key can obtain 
those statistical results, making it possible to build a sta-
tistical analysis system that considers privacy.

In data analysis handling medical data or genomic in-
formation typified by genome-wide association studies, a 
leak of information could affect not just that person but 
also his/her relatives and children, so it is necessary to 
maintain security for a longer time than for usual data. On 
the other hand, with the evolution of computers and de-
velopments in cryptanalysis technology, cryptanalysis 
abilities are improving gradually, so the security of en-
crypted data declines over time. Security of cryptosystems 
is estimated from predicted advancements in computers, 
but it is difficult to predict their futures, so security of 
cryptosystems can be guaranteed for only a few decades at 
most. Therefore, it is necessary to ensure secure use over 
a long period by, for example, decrypting encrypted data 
first and then encrypting it by more advanced cryptosys-
tems. In such a case, the data is exposed temporarily to a 
high risk of leak.

Against this backdrop, we have developed a new ho-
momorphic encryption technology called SPHERE 
(Security-updatable Public-key Homomorphic Encryption 

with Rich Encodings) which not only uses homomorphic 
encryption for statistical analysis etc., but also enables 
updating the security level (key length) without increasing 
leak risks. Therefore, it enables secure use of encrypted data 
over a long period of time.

Further, as an application, we conducted a variant of 
logistic regression analysis over data encrypted by SPHERE. 
Logistic regression analysis includes operations such as 
exponentiations and logarithms that are unsuitable for 
computation over encrypted data, so high speed calculation 
is difficult to achieve with it as-is. This problem was re-
solved by improving polynomial approximations of expo-
nential functions and logarithmic functions, as well as data 
preprocessing done on the data provider’s side. The ex-
periment was done with a hundred million records of 
simulated data, and it was confirmed that the analysis can 
be done in about 30 minutes.

2	 New homomorphic encryption scheme 
(SPHERE)

The SPHERE scheme we developed consists of ℓ dimen-
sion vector of 

 

  (where 　　　　　　　　　) in plain-
text, and 

 

  dimension vector of 

 

 in ciphertext. The 
homomorphic operation involves addition multiple times, 
and multiplication once (tensor product of vector), and also 
supports a security level update function. Figure 1 shows 
its cryptographic algorithms. In the figure, ParamGen( ) is 
parameter generation, KeyGen( ) is key generation, Enc( ) 
is encryption, and Dec( ) is decryption. pk is the public 
key, and sk the secret key. The security of ciphertext and 
keys is determined by the Learning with Error problem. 
For security proofs and other details, see [1].
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2.1	 Learning with Error problem
When Matrix A sampled uniformly at random from 

integers modulo q and integer vector 

 

  
are given, the problem for solving integer vector 

 

  is said 
to be a Learning with Error (LWE) problem. Here, e is the 
noise vector extracted from discrete Gaussian distribution 
of variance s2. For the shortest vector problem and the 
assessment of its complexity, see [2]. Complexity of an LWE 
problem is given by the exponential time of the dimension 
of vector 

 

 , so the greater the dimension of 

 

 , the more 
complex the calculation. Further, the LWE problem is dif-
ferent from integer factorization and discrete logarithm 
problems in the sense that it can possibly resist against even 
large-scale quantum computers. Therefore, the hardness of 
the LWE problem is a guarantee for post-quantum cryp-
tography.

In an example of decrypting plaintext from ciphertext, 
we see a relation between SPHERE and LWE problems. 
The ciphertext of SPHERE, 

 

 , is given as 

 

 . A and 
P are the public keys, 

 

  are noise vectors 
unknown to the attacker, and m is plaintext. Plaintext 

 

  is the vector of 

 

 , so if 

 

  
is found, the plaintext can be obtained from 

 

� � 	 	  

 

 . However, to get 

 

 , 

 

  

 

  has to be solved first. This is equivalent to an LWE 
problem, so if the problem is sufficiently difficult, decrypt-
ing the plaintext from the ciphertext is also likely to be 
difficult.

2.2	 Security level update
The security of SPHERE is determined by the LWE 

problem, and the difficulty of the LWE problem lies in the 

exponential time of the dimension of the secret vector 
(denoted by parameter 

 

  in SPHERE). Therefore, if 

 

  is 
changed to new 

 

  without disturbing the informa-
tion or structure of ciphertext, the security level can be 
updated. To achieve this, we applied a technique called 
dimension switching [3]. Figure 2 shows the security level 
update process. In the figure, the keys before and after 
update are 

 

 , and 

 

  indi-
cates before and after update, respectively. Bits( ) is the bit 
conversion function to reduce each component to a size as 
small as noise, while keeping the information of the cipher-
text intact. Power2( ) is the function amounting to Bits 

 

 
Power2 

 

 . UKGen( ) is update key generation, 
and Update( ) is the ciphertext security level update process.

2.3	 Fixed point number encoding
As described at the start of this section, each element 

in the plaintext space of SPHERE is an ℓ dimension vector 
of 

 

 . However, real values (with precision) must be handled 
in the actual processing system which needs to be con-
structed with homomorphic encryption, such as a statisti-

Fig.F 1　Cryptographic algorithms of SPHERE

Fig.F 2　Security level update process details
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cal analysis system. A technique of encoding 

 

  coefficient 
polynomial, and then to integers and fixed point numbers 
is described here.

For encoding of 

 

  coefficient polynomials, one can 
consider each coefficient of polynomial ���� � ∑ ����������    
to be vector 

 

  which is contained in each 
element. In this expression, addition/subtraction of vectors 
(

 

 ) will obviously correspond to addition/subtraction 
of the corresponding polynomial (

 

 ). In poly-
nomial multiplication, each element of tensor product 　　 
of vector is the product 

 

  of the elements of vector A, 
B, so if the elements of 　　 are appropriately summed, it 
is possible to calculate each coefficient of 

 

 .
The signed binary expression when integers and fixed 

point numbers are encoded will be as follows.

 

� � � ��2�
�����

����
���� � � �0,1������ � 0

��1,0������ � 0 )
It is defined by corresponding each 

 

  to the coefficients 
of the polynomial. When 

 

 , it is an integer, but when 

 

 , it is a fixed point number of L digits precision 
below the decimal point. The operations of 

 

  coefficient 
polynomial and SPHERE plaintext are corresponding, so 
operation of plaintext of SPHERE enables the operation of 
integers and fixed point numbers. If each coefficient in the 
result of the operation with vectors is within the range of 
　　　　　　　　  , then the corresponding polynomials 
N(x) and N correspond on a one-to-one basis, and if the 
operation result is not within the 

 

  range, it is not pos-
sible to revert to integers and fixed point numbers cor-
rectly, so it is necessary to control the number of operations 
and size of p appropriately.

2.4	 Implementation results
The SPHERE scheme is implemented and the process-

ing time is measured in Table 1 and Table 2. In the table, 
bit-sec means bit security, Key rotation indicates key update 
of the same security level, and Security update indicates 
the security level update process. The experiment was car-
ried out using a Xeon E5-2660v3 (2.60 GHz), and all cal-
culations were done using a single thread.

3	 Application to privacy-preserving data 
mining – logistic regression analysis

Logistic regression analysis is one type of supervised 
machine learning, and it has a wide range of applications. 
An example can be a service that diagnoses whether a 

patient has an illness or not. In such a case, the data for 
training and predicting is information that involves pri-
vacy, so of course it must be handled carefully. We applied 
homomorphic encryption technology to carry out logistic 
regression analysis while handling data securely. In the 
system we developed, the training data and the data to be 
classified are encrypted, so they are completely protected.

Figure 3 shows the data processing model of the system 
we developed. The data given by the data providers (pa-
tients themselves, medical institutions, etc.) is encrypted 
and saved in the central server. The server carries out the 
process related to logistic regression analysis using the 
homomorphisms of encryption, and sends the processed 
result still in encrypted form to the data analyst. By de-
crypting that, the data analyst can extract the learned lo-
gistic regression coefficient.

3.1	 Logistic regression analysis
The data set to be studied is expressed as record 

 

  of 

 

  items, and each record shall 
be a pair of 

 

  dimensional real number vector 

 

  and label 

 

 . The cost 
function J where the regression coefficient 

 

  
is considered as the variable, is defined as 

 

T  

 

T  
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2 � TableT 1　Measured timings of cryptographic algorithms (Milliseconds)

TableT 2　Measured timings of security update process (Seconds)

Fig.F 3　Data process model
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However, it shall be

 

�∗��� � 1
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Here, 

 

  is the sigmoid function, 

defined as 

 

����� � 1
1 � �������T�� �

1
1 � ������∑ ���������

 . 

Always, 

 

 .
In the training phase of logistic regression analysis, 

 

�∗ � �����������  is calculated for minimizing cost for the 
assigned data set.

In the predicting phase, corresponding to newly entered 

 

  data to be judged, the la-
bel     belongs to either of 　　 , which is estimated by 
the following formula.

 

���� � ��������∗��
���� � thres

�������∗������ � thres 

Here, thres ∈ (0,1) is the threshold value, and in most 
cases, thres=1/2 is used.

3.2	 Improvement 1 for homomorphic encryption: 
Deletion of exponential/logarithmic function 
by polynomial approximation

The definition of function 

 

�∗���  includes an exponen-
tial/logarithmic function, so if one tries to implement these 
functions precisely by homomorphic encryption, then it 
leads to an extremely complicated form. To solve this 
problem, a learning algorithm is built by approximating 
these functions using appropriate polynomials, specifically 
quadratic polynomials.

Using quadratic approximation ∑ ����������    of function 

 

���� 1
1 � ������� ,

 

  and 

 

  are approximated to 

 

����� � ������ ������T���,
�

���
����������� �����������T���

�

���
 .

At this time, the approximated 

 

�������∗ ���  of 

 

�∗���  
where the above formula was used is 

 

�������∗ ��� � 1
������� �� ����� � � ���� �������� � ��

�

�����

�

���
 . 

However, it will be

�������� � ∑ ������ � �� ����������������   � （1）

�������� � ∑ �����������������������   � （2）.

 

�Taylor���� � � lo� � � �� � ����� �� � ������  by Taylor 
expansion is well known as an approximation coefficient. The 
error is comparatively large in two-dimensional development, 
so we used 

 

�LSM���� � ���������� �� � ����� �� � ����������  
in which the error was minimized by the least squares 
method in interval 

 

 . Figure 4 shows the origi-
nal function, and the graphs approximated by the respective 
quadratic polynomials.

3.3	 Improvement 2 for homomorphic encryption: 
Removing multiplications by the data 
provider performing calculations beforehand

Logistic regression analysis is possible if the homomor-
phic encryption method supports quadratic form computa-
tion, by polynomial approximation of the exponential 
function and logarithmic function. However, as seen in 
Table 1, SPHERE’s multiplication Mul( ) and its decryption 
DecM( ) are relatively slow. Therefore, to analyze on a 
large-scale data set, such as 100 million records, it is neces-
sary to make the system more efficient.

From the formulas (1) and (2) shown in Subsection 3.2, 
we see that

each item 　　　　　　　　　　　　　　　　　　  
is comprised of records 　　　　. This means that for the 
computation of 

 

 , the data provider can compute 
before encryption. Using this, logistic regression analysis 
using homomorphic encryption is carried out as follows.

The data provider that has records 

 

  calculates 
　　　　　　　　　　　, and encrypts each, and sends 
those results to the server. The server can obtain 

 

  by homomorphic addition of 

 

 

 

 

 

 

 

 

 

 

Fig.F 4	 Original function and the approximated quadratic 
polynomials
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the received ciphertexts             . Later,  
the client will decrypt, and 　　　　  is obtained from 

 

 , and using that, the learned logistic regres-
sion coefficient 

 

�∗  is calculated.
In this method, while the data provider must encrypt 

each 

 

 , it is sufficient for the server to conduct 
only homomorphic addition, so more efficient calculations 
are possible in a model where there are many more data 
providers than servers, as in the model we have assumed. 
Also, since this improvement requires only homomorphic 
additions, additive homomorphic cryptosystems, e.g., 
Paillier encryption [4], which only supports additions on 
encrypted data, can be employed.

3.4	 Experiment results
Regarding the improvements described above, (1) the 

computation time of the server for a large-scale simulated 
data set was measured, and (2) the statistical index of an 
actual data set was evaluated. The latter was done to 
evaluate the effect on practicality by quadratic polynomial 
approximation.

Figure 5 shows the computation time of the server for 
a large-scale simulated data set. The number of records are 
100 million and 200 million, and the horizontal axis is the 
data’s dimension d. The computation experiment was 
conducted using parameters that achieve 128-bit security, 
and using a server equipped with two Xeon E5 -2660v3 
(2.60 GHz), the computations were done in 20 threads. 
Even if 

 

 
  

 (approximately), we found that the analysis 
is completed within 30 minutes, even for a 100 million data 
set.

Next, Table 3 shows the evaluation of statistical index 
of the actual data set. From among the public data reposi-
tories of University of California, Irvine [5], the data set 
related to diabetes among the Pima Indians of North 
America (Pima), and the data set of relations between re-
sults of single-photon emission computed tomography of 
a heart and the presence or absence of heart diseases 
(SPECTF) are used for evaluation. The accuracy, F-score 
and AUC were treated as evaluation indices. For the defini-

tion of each index, see [6]. It is clear that the accuracy, 
F-score and AUC do not deviate greatly, and the effect of 
polynomial approximation is minor. Refer to [7] [8] for 
details on other data sets.

4	 Summary

This paper describes SPHERE, a long-term usable ho-
momorphic cryptography technology developed by the 
Security Fundamentals Laboratory, and the building of a 
privacy-preserving logistic regression analysis system as its 
application. Although omitted in this paper, besides logis-
tic regression analysis, the technology was used for linear 
regression analysis and biometric authentication [1].

While data collection/analysis by IoT, etc. has become 
easy, protecting personal information from being leaked 
from the data is a pressing issue. We hope that the cryp-
tographic technology and the applied technology that we 
developed will serve as one of the solutions for such issues.

 

 

 

�������∗ ��� 

Fig.F 5	 Computation time of server for large-scale simulated data 
set

TableT 3　Comparison of accuracy, F-score and AUC, between original function and quadratic polynomial approximation
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