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1  Introduction

In this paper we introduce SprinTra a 
modern state-of-the-art speech decoder that is 
currently under development at NICT. Some 
of the main goals in development of the 
SprinTra were to:

●  Create a recognition engine which would
provide a state-of-the-art research plat-
form for implementing and exploring 
new ideas.

●  Develop a commercial quality engine
that could be used in live services such 
as VoiceTra and licensed as a standalone 
engine.

The engine is designed to operate on 
Weighted Finite State Transducers (WFSTs) ［1］ 
which are a type of finite state machine that 
can provide a mapping between strings with 
an optional weight to represent uncertainty. 

In this paper we describe the NICT Weighted Finite State Transducer (WFST) based speech 

decoder named SprinTra. The paper starts with a brief introduction to WFSTs and the accom-

panying mathematical notation. This is followed by an introduction to the use of WFSTs in 

speech recognition, here we give a brief description of the WFST components used in a typical 

speech recognition system, and explain how they are combined and optimized to yield very ef-

fi cient decoder search spaces. After describing these preliminaries we move on to a high level 

description of the features and architecture of SprinTra. Our focus was to design and imple-

ment an engine suitable for research and deployment usage. To bring the state-of-the art 

speech recognition technology to as many users as possible SprinTra can run on many plat-

forms and be additionally accessed through various programming interfaces and scripting lay-

ers. The supporting tools are also designed with portability and good usability, and this allow 

users and non-speech recognition experts to easily construct state-of-the-art speech recogni-

tion systems. The description of SprinTra's core features includes a description our on-the-fl y 

algorithm we have proposed to allow for memory effi cient composition of class N-gram models.

Recently, the use of WFSTs in speech recog-
nition has become extremely popular, one of 
the main advantages of the approach is the 
unified manner all of the models can be opti-
mized and combined together. Furthermore, 
performing the optimization ahead of decod-
ing allows for the development of speech rec-
ognition engines that can often deliver faster 
recognition speeds when compared to more 
traditional dynamic decoders ［2］.

However, there are several drawbacks to 
the unified approach, firstly large amounts of 
memory can be required to hold the fully com-
posed network during recognition and the off-
line memory usage during composition and 
optimization may become prohibitively large. 
After the composition access to the informa-
tion source is lost and therefore changing the 
models on-line becomes much more difficult. 
To mitigate these issues various on-the-fly 
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composition approaches have been proposed 
［3］‒［12］. Later in the paper we describe a spe-
cialized algorithm we have developed to allow 
memory efficient three-way composition of 
class based N-gram language models ［13］.

The rest of this paper is structured as fol-
lows: In Section 2 we give an introduction to 
WFSTs and the accompanying notation. 
Section 3 brifley describes the use of WFSTs 
in speech recognition. Section 4 gives a high 
level description of the features and architec-
ture of SprinTra. This is followed by a section 
describing our memory efficient class N-gram 
composition scheme. The paper is finished 
with a summary in Section 6.

2  Weighted Finite State 
Transducers (WFST)

We first start with a brief overview of 
WFSTs that will cover the theoretical founda-
tion needed to describe the algorithms present-
ed later in the paper. For a more in depth de-
scription of WFSTs in speech recognition the 
reader is referred to ［1］［14］［15］.

A WFST is a generalized type of finite au-
tomata where each of the transitions has an 
output label and optional weight in addition to 
the input label. Formally a transducer T is 
defined as the 8 tuple ［14］［15］.

T＝（Σ，Δ，Q，I，F，E，λ，ρ） (1)

Where:
● Σ is a finite input alphabet.
● Δ is a finite output alphabet.
● Q is a finite set of states.
● I ⊆ Q is the set of initial states.
● F ⊆ Q is the set of final states.
●  E ⊆ Q × (Σ ∪ {∊}) × (Δ ∪{∊}) ×  × 

Q is a finite set of transitions.
● λ  : I →  the initial weight function.
● ρ  : F →  the final weight function.

3  WFSTs for speech recognition

We follow the construction scheme de-
scribed in ［14］ where the recognition cascade 

is constructed from the following components; 
the Language Model G which represents the 
recognition grammar, the lexicon L which is 
built from the pronunciation dictionary and 
maps from phoneme sequences to words, a 
transducer C that converts context-dependent 
phonemes to context-independent phonemes.

To give the reader a feel for based WFST 
representations a simple N-gram language 
model G is shown in Fig. 1. In this Figure the 
arc labels are of the form label/weight. To 
efficiently represent the N-gram language 
model as an WFST, each state is used to de-
note a N-gram history and each arc represents 
a N-gram probability or back-off score. For 
example the arc a/P(a|b) gives the bigram 
probability ab. The input label a indicates we 
consume a from the input tape, the source 
state labeled b shows the current unigram his-
tory and the destination state label ba gives the 
new history. When no high order N-grams 
transitions match the current symbol we en-
code the back-off scores as epsilon transitions 
as described in ［16］. These epsilon arcs con-
sume no input and allow us to follow back-off 
transitions to lower order N-gram histories un-
til the current input symbol can be matched.

The G, L and C transducers are combined 
according to:

　　π (C ○ min (det (L ○ G)))

where det is the determinization operation, 
min is the minimization operation, ○ is the 
composition operation and the π operator is a 
procedure that removes auxiliary symbols. The 
determinization operation is similar to a prefix 
sharing operation, whilst the minimization op-
eration is equivalent to a tail sharing operation. 

A simple backoff N-gram model repre-
sented as a WFST

Fig.1
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To illustrate these operations, a very small 
speech recognition lexicon L is shown in Fig. 2. 
Here each word is a linear chain of arcs and 
states, the input side of each chain is sequence 
of phone that maps to a word output symbol. 
The lexicon shown here is constructed as the 
union of a set of such chains. In Figure 3 the 
effects of the determinization and minimiza-
tion can be seen, here we can see common 
prefixes and suffixes are shared to give more 

efficient WFST but equivalent functional rep-
resentation.

4  Engine features overview

4.1  Core features
The core feature set includes all of the 

functionality one would expect from a modern 
recognition engine:

●  Input - There is an integrated front end 

A simple lexicon transducerFig.2

A deterministic and minimalistic equivalent lexiconFig.3
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for speech signal feature extraction or 
we can optional consume pre-computed 
features from files or network sockets.

●  Output - SprinTra can output 1-best rec-
ognition results or a lattice which is a 
representation of the many alternative 
speech hypotheses. From the lattice use-
ful information such n-best lists or con-
fusion networks can be extracted.

●  Flexibility - For flexibility we can oper-
ate on static search networks, compose 
language dynamically or use our special-
ized class model composition algorithm.

4.2  Portability
One of the main requirements of SprinTra 

was to bring the technology to as many plat-
forms as possible. To achieve this we have no 
binary library dependencies and the decoder is 
currently able to run as the following:

●  The decoder can be run as command line 
application for batch mode processing 
and used in offline research setting.

●  We also provide a developer level pro-
gramming interface on both Windows 
and Unix platforms.

●  Finally we provide a high-level Python 
scripting interface for rapidly developing 
server applications.

4.3  Supporting tools
Constructing the integrated and component 

WFSTs requires much skill and experience. In 
particular certain composition or optimization 
operations will never terminate and easily ex-
haust huge memory machines. The SprinTra 
toolbox includes several integrated build tools 
that convert the raw models to WFSTs. The 
tools will perform all the necessary composi-
tion and optimization steps based on the appli-
cations requirements. Using the tools allows 
for non-domain experts and developers to rap-
idly and safely build high performance WFST 
speech recognition systems. There are many 
subtle choices which can have a profound ef-
fect on the final search network. In just one 
command we use our experience to select the 
best optimization options.

Like the decoder itself the build tools are 
portable and run on all supported platforms. 
For seamless integration into NICTs current 
architectures we support standard and legacy 
formats such as HTK ［17］ or ATRASR acous-
tic models and ARPA format language mod-
els. For the WFST representations we use the 
ATT text format and the OpenFst binary for-
mat.

5  Fused composition algorithm

A class N-gram model can be represented 
as two transducers, an N-gram model of class 
labels G, and a transducer T that maps from 
class labels to word labels. The expansion of 
G with T can be performed using standard 
composition and projection operations ［1］:

　　GT＝ Sort1 (Proj2 (G ○ T )) (2)

Here the subscripts 1 and 2 denote input or 
output labels respectively. Proj2 replaces all 
output labels in GT with word labels. The final 
Sort1 is necessary to make the subsequent 
composition with CL more efficient. During 
speech decoding the entire cascade is:

　　CL ○ (Sort1 (Proj2 (G ○ T ))) (3)

Where CL is shorthand for C ○ det (L). 
The static expansion of a class N-gram will 
often require substantial memory as each class 
label in G could potentially be multiplied by 
every transition in T. Therefore the expansion 
of GT is performed on-the-fly.

Our proposed algorithm exploits the limit-
ed topology of the G and T WFSTs. We as-
sume T has a single state and each arc repre-
sents a mapping from a class label to a single 
word label. Therefore the WFST resulting 
from the composition G ○ T will have the 
same number of states as G. Under these con-
straints the composition and sort is equivalent 
to merging a set of sorted lists, and it is a sim-
ple addition to also fuse the projection opera-
tion into the merging process.

The fused GT WFST type aggregates G 
and T and works as follows: T is represented 
as a set of lists each sorted by word labels and 
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indexed by the class labels. During decoding 
given a state s in GT, the first step is to iterate 
over the k arcs leaving state s in G and create a 
list of k class-to-word lists. A min-heap keyed 
on the output labels is used to merge the k lists 
with a total running time of O (nlog(k)) ［18］, 
where k is the total number of arcs leaving s 
and n is the sum of arcs across the k class lists. 
The fused algorithm also removes the memory 
requirement of the lazy project and sort opera-
tions.

6  Summary

In this paper we have introduced the 
SprinTra decoder. We have achieved the im-
portant goal of providing NICT with a state-

of-the-art engine for future speech recognition 
and speech translation endeavors. In addition 
our highly portable engine and easy to use 
toolkit allow for non-domain experts and de-
velopers to easily make use of cutting edge 
WFST based speech recognition. In current 
and future versions we are working on more 
efficient algorithms that allow for dynamic vo-
cabulary, this is very important for certain ap-
plications. In addition our current research is 
focused researching new methods for combin-
ing SprinTra with WFST based dialogue and 
translation systems. On a development front 
we have shown the portability of the SprinTra 
and would like to bring standalone versions to 
smaller platforms such as smartphones and 
tablets.
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