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1  Introduction

System combination techniques take the 
advantages of consensus among multiple sys-
tems and have been widely used in fields, such 
as speech recognition ［1］［2］ or parsing ［3］. 
One of the state-of-the-art system combination 
methods for MT is based on confusion net-
works, which are compact graph-based struc-
tures representing multiple hypotheses ［4］.

Confusion networks are constructed based 
on string similarity information. First, one 
skeleton or backbone sentence is selected. 
Then, other hypotheses are aligned against the 
skeleton, forming a lattice with each arc repre-
senting alternative word candidates. The align-
ment method is either model-based ［5］［6］ in 
which a statistical word aligner is used to com-
pute hypothesis alignment, or edit-based ［7］［8］ 
in which alignment is measured by an evalua-
tion metric, such as translation error rate 
(TER) ［9］. The new translation hypothesis is 
generated by selecting the best path through 

The state-of-the-art system combination method for machine translation (MT) is based on 

confusion networks constructed by aligning hypotheses with regard to word similarities. We in-

troduce a novel system combination framework in which hypotheses are encoded as a confu-

sion forest, a packed forest representing alternative trees. The forest is generated using syntac-

tic consensus among parsed hypotheses: First, MT outputs are parsed. Second, a context free 

grammar is learned by extracting a set of rules that constitute the parse trees. Third, a packed 

forest is generated starting from the root symbol of the extracted grammar through non-termi-

nal rewriting. The new hypothesis is produced by searching the best derivation in the forest. 

Experimental results on the WMT10 system combination shared task yield comparable perfor-

mance to the conventional confusion network based method with smaller space.

the network.
We present a novel method for system 

combination which exploits the syntactic simi-
larity of system outputs. Instead of construct-
ing a string-based confusion network, we gen-
erate a packed forest ［10］［11］ which encodes 
exponentially many parse trees in a polynomi-
al space. The packed forest, or confusion for-
est, is constructed by merging the MT outputs 
with regard to their syntactic consensus. We 
employ a grammar-based method to generate 
the confusion forest: First, system outputs are 
parsed. Second, a set of rules are extracted 
from the parse trees. Third, a packed forest is 
generated using a variant of Earley’s algorithm 
［12］ starting from the unique root symbol. 
New hypotheses are selected by searching the 
best derivation in the forest. The grammar, a 
set of rules, is limited to those found in the 
parse trees. Spurious ambiguity during the 
generation step is further reduced by encoding 
the tree local contextual information in each 
non-terminal symbol, such as parent and sib-
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ling labels, using the state representation in 
Earley’s algorithm.

Experiments were carried out for the sys-
tem combination task of the fifth workshop on 
statistical machine translation (WMT10) in 
four directions, {Czech, French, German, 
Spanish}-to-English ［13］, and we found com-
parable performance to the conventional con-
fusion network based system combination in 
two language pairs, and statistically significant 
improvements in the others.

2  Confusion network

The system combination framework based 
on confusion network starts from computing 
pairwise alignment between hypotheses by 
taking one hypothesis as a reference. ［5］ em-
ploys a model based approach in which a sta-
tistical word aligner, such as GIZA++ ［14］, is 
used to align the hypotheses. ［8］ introduced 
TER ［9］ to measure the edit-based alignment.

Then, one hypothesis is selected, for ex-
ample by employing a minimum Bayes risk 
criterion ［8］, as a skeleton, or a backbone, 
which serves as a building block for aligning 
the rest of the hypotheses. Other hypotheses 
are aligned against the skeleton using the pair-
wise alignment. Figure 1(b) illustrates an ex-
ample of a confusion network constructed 
from the four hypotheses in Fig. 1(a), assum-
ing the first hypothesis is selected as our skel-
eton. The network consists of several arcs, 
each of which represents an alternative word 

at that position, including the empty symbol, ∊.
This pairwise alignment strategy is prone 

to spurious insertions and repetitions due to 
alignment errors such as in Fig. 1(a) in which 
“green” in the third hypothesis is aligned with 
“forest” in the skeleton. ［15］ introduces an in-
cremental method so that hypotheses are 
aligned incrementally to the growing confu-
sion network, not only the skeleton hypothesis. 
In our example, “green trees” is aligned with 
“blue forest” in Fig. 1(c).

The confusion network construction is 
largely influenced by the skeleton selection, 
which determines the global word reordering 
of a new hypothesis. For example, the last hy-
pothesis in Fig. 1(a) has a passive voice gram-
matical construction while the others are ac-
tive voice. This large grammatical difference 
may produce a longer sentence with spuriously 
inserted words, as in “I saw the blue trees was 
found” in Fig. 1(c). ［16］ partially resolved the 
problem by constructing a large network in 
which each hypothesis was treated as a skele-
ton and the multiple networks were merged 
into a single network.

3  Confusion forest

The confusion network approach to system 
combination encodes multiple hypotheses into 
a compact lattice structure by using word-level 
consensus. Likewise, we propose to encode 
multiple hypotheses into a confusion forest, 
which is a packed forest which represents mul-

(a) Pairwise alignment using the first starred hypothesis as a skeleton. (b) Confusion network from (a)

(c) Incrementally constructed confusion network

An example confusion network constructionFig.1
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tiple parse trees in a polynomial space ［10］［11］. 
Syntactic consensus is realized by sharing tree 
fragments among parse trees. The forest is 
represented as a hypergraph which is exploited 
in parsing ［17］［18］ and machine translation 
［19］［20］.

More formally, a hypergraph is a pair 〈V, 
E〉 where V is the set of nodes and E is the set 
of hyperedges. Each node in V is represented 
as X@p where X ∈ N is a non-terminal symbol 
and p is an address ［21］ that encapsulates each 
node id relative to its parent. The root node is 
given the address ∊ and the address of the first 
child of node p is given p.1. Each hyperedge e 
∈ E is represented as a pair 〈head(e), tails(e)〉 
where head(e) ∈ V is a head node and tails(e) 
∈ V* is a list of tail nodes, corresponding to 
the left-hand side and the right-hand side of an 
instance of a rule in a CFG, respectively. 
Figure 2 presents an example packed forest for 
the parsed hypotheses in Fig. 1(a). For exam-
ple, VP@2 has two hyperedges, 〈VP@2, (VBD@3, 
VP@4)〉 and 〈VP@2, (VBD@2.1, NP@2.2)〉, leading 
to different derivations where the former takes 
the grammatical construction in passive voice 
while the latter in active voice.

Given system outputs, we employ the fol-
lowing grammar based approach for construct-
ing a confusion forest: First, MT outputs are 
parsed. Second, a grammar is learned by treat-
ing each hyperedge as an instance of a CFG 

rule. Third, a forest is generated from the 
unique root symbol of the extracted grammar 
through non-terminal rewriting.

3.1  Rule extraction
During the rule extraction procedure, we 

reduce spurious ambiguities o the extracted 
grammar by encoding the original tree struc-
tu res  in  each  node .  F i r s t ,  ho r i zon ta l 
Markovization ［23］ encodes sibling labels in 
each non-terminals. For instance, Fig. 3(a) 
presents a parse tree for a system output “I 
saw the forest.” In Figure 3(b), the sub-tree 
rooted at the node VP@2 in Fig. 3(a) is annotat-
ed by our labeling method. For example, 
NP@2.2 is combined with its sibling VBD@2.1 
with ● representing the original label posi-
tions.

Next, vertical Markovization ［23］ com-
bines parent labels. In Figure 3(c), the node at 
@2.2 is combined with its parent node @2, 
yielding the new label (NP: ● VP + VBD: ● 
NP). After the label annotation, we extract a 
grammar by treating each hyperedge as a rule.

The context represented in each node is 
further limited by the vertical and horizontal 
Markovization ［23］. We define the vertical or-
der v in which the label is limited to memorize 
only v previous parents. Likewise, we intro-
duce the horizontal order h which limits the 
number of sibling labels memorized on the left 
and the right of the dotted label.

No limits in the horizontal and vertical 
Markovization orders implies memorizing of 
all the original tree structures and yields a con-
fusion forest representing the union of parse 
trees through the grammar collection and the 
generation processes. More relaxed horizontal 
orders allow more reordering of subtrees in a 
confusion forest by discarding the sibling con-
text. Likewise, constraining the vertical order 
generates a deeper forest by ignoring the se-
quence of symbols leading to a particular 
node.

3.2  Forest generation
Given the extracted grammar, we apply a 

variant of Earley’s algorithm ［12］ which can 
An example packed forest representing 
hypotheses in Fig. 1(a)

Fig.2
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generate strings in a left-to-right manner from 
the unique root symbol, TOP. Figure 4 pres-
ents the deductive inference rules ［22］ for our 
generation algorithm. We use capital letters X 
∈ N to denote non-terminals and x ∈ T for ter-
minals. Lowercase Greek letters α , β  and γ  are 
strings of terminals and non-terminals (T ∪ 
N)*. u and v are weights associated with each 
item.

The major difference compared to Earley’s 
parsing algorithm is that we ignore the termi-
nal span information each non-terminal covers 
and keep track of the height of derivations by 
h. The scanning step will always succeed by 
moving the dot to the right. Combined with 
the prediction and completion steps, our algo-
rithm may potentially generate a spuriously 
deep forest. Thus, the height of the forest is 
constrained in the prediction step not to ex-
ceed H, which is empirically set to 1.5 times 
the maximum height of the parsed system out-
puts.

3.3  Forest rescoring
From the packed forest F, new k-best deri-

vations are extracted from all possible deriva-
tions D by efficient forest-based algorithms for 
k-best parsing ［18］. We use a linear combina-
tion of features as our objective function to 
seek for the best derivation d̂ :

(1)

(a) A parse tree for “I saw the forest”

(b) Horizontal Markovization for subtree rooted by VP@2 (c) Vertical Markovization for (b)

Label annotation by horizontal/vertical MarkovizationFig.3

The deductive system for Earley’s genera-
tion algorithm

Fig.4
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where h (d, F ) is a set of feature functions 
scaled by weight vector w. We use cube-prun-
ing ［19］［20］ to approximately intersect with 
non-local features, such as n-gram language 
models. Then, k-best derivations are extracted 
from the rescored forest using algorithm 3 of 
［18］.

4  Experiments

4.1  Setup
We ran our experiments for the WMT10 

system combination task usinge four language 
pairs, {Czech, French, German, Spanish}-to-
English ［13］. The data is summarized in Table 
1. The system outputs are retokenized to 
match the Penn-treebank standard, parsed by 
the Stanford Parser ［23］, and lower-cased.

We implemented our confusion forest sys-
tem combination using an in-house developed 
hypergraphbased toolkit cicada which is moti-
vated by generic weighted logic programming 
［24］, originally developed for a synchronous-
CFG based machine translation system ［19］. 
Input to our system is a collection of hyper-
graphs, a set of parsed hypotheses, from which 
rules are extracted and a new forest is generat-
ed as described in Section 3. Our baseline, 
also implemented in cicada, is a confusion 
network-based system combination method 
(See in Section 2) which incrementally aligns 
hypotheses to the growing network using TER 
［15］ and merges multiple networks into a large 
single network. After performing epsilon re-
moval, the network is transformed into a forest 
by parsing with monotone rules of S → X, 
S → S X and X → x. k-best translations are 
extracted from the forest using the forest-

based algorithms in Subsection 3.3.

4.2  Features
The feature weight vector w in Equation 1 

is tuned by MERT over hypergraphs ［25］.
We use three lower-cased 5-gram language 

models hi
lm(d): English Gigaword Fourth 

edition*1, the English side of French-English 
109 corpus and the news commentary English 
data*2. The count based features ht(d) and he(d) 
count the number of terminals and the number 
of hyperedges in d, respectively. We employ 
M confidence measures hm

s (d) for M systems, 
which basically count the number of rules 
used in d originally extracted from mth system 
hypothesis ［26］.

Following ［27］, BLEU ［28］ correlations are 
also incorporated in our system combination. 
Given M system outputs e1...eM, M BLEU 
scores are computed for d using each of the 
system outputs em as a reference

where e = yield (d) is a terminal yield of d, 
BP (・) and ρ n (・) respectively denote brevity 
penalty and N-gram precision. Here, we use 
approximated unclipped N-gram counts ［29］ 
for computing ρ n (・) with a compact state rep-
resentation ［30］.

Our baseline confusion network system 
has an additional penalty feature, hp (m), which 
is the total edits required to construct a confu-
sion network using the mth system hypothesis 
as a skeleton, normalized by the number of 
nodes in the network ［16］.

4.3  Results
Table 2 compares our confusion forest ap-

proach (CF) with different orders, a confusion 
network (CN) and max/min systems measured 
by BLEU ［28］. We vary the horizontal orders, 
h = 1, 2, ∞ with vertical orders of v = 3, 4, ∞. 
Systems without statistically significant differ-

＊1  LDC catalog No. LDC2009T13
＊2  Those data are available from http://www.statmt.org/wmt10/.

WMT10 system combination tuning/
testing data

Table 1

cz-en de-en es-en fr-en
# of systems 6 16 8 14
avg. words tune 10.6K 10.9K 10.9K 11.0K
 test 50.5K 52.1K 52.1K 52.4K
sentences tune 455
 test 2,034
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ences from the best result (p < 0.05) are indi-
cated by bold face. Setting v = ∞ and h = ∞ 
achieves comparable performance to CN. Our 
best results in three languages come from set-
ting v = ∞ and h = 2, which favors little reor-
dering of phrasal structures. In general, lower 
horizontal and vertical order leads to lower 
BLEU.

Introducing new tree fragments to confu-
sion forests leads to new phrasal translations 
with enlarged forests, as presented in Table 3, 
measured by the average number of hyperedg-
es*3. The larger potentials do not imply better 
translations, probably due to the larger search 
space with increased search errors. We also 
conjecture that syntactic variations were not 
captured by the N-gram like string-based fea-
tures in Chapter 4-2, therefore resulting in 

BLEU loss, which will be investigated in fu-
ture work.

Table 3 also shows that CN produces a 
forest that is an order of magnitude larger than 
those created by CFs. Although we cannot di-
rectly relate the runtime and the number of hy-
peredges in CN and CFs, since the shape of 
the forests are different, CN requires more 
space to encode the hypotheses than those by 
CFs.

5  Conclusion

We presented a confusion forest based 
method for system combination in which sys-
tem outputs are merged into a packed forest 
using their syntactic similarity. The forest con-
struction is treated as a generation from a CFG 
compiled from the parsed outputs. Our experi-
ments indicate comparable performance to a 
strong confusion network baseline with small-
er space, and statistically significant gains in 
some language pairs.

To our knowledge, this is the first work to 
directly introduce syntactic consensus to sys-
tem combination by encoding multiple system 
outputs into a single forest structure. We be-
lieve that the confusion forest based approach 
to system combination has future exploration 
potential. For instance, we did not employ 
syntactic features in Subsection 4.2 which 
would be helpful in discriminating hypotheses 
in larger forests. We would also like to ana-
lyze the trade-offs, if any, between parsing er-
rors and confusion forest constructions by 
controlling the parsing qualities. As an alterna-
tive to the grammar-based forest generation, 
we are investigating an edit distance measure 
for tree alignment, such as tree edit distance 
［31］ which basically computes insertion/dele-
tion/replacement of nodes in trees.

Translation results in lower-case BLEU. 
CN for confusion network and CF for 
confusion forest with different vertical (v) 
and horizontal (h) Markovization order

Table 2

language cz-en de-en es-en fr-en
system min 14.09 15.62 21.79 16.79
 max 23.44 24.10 29.97 29.17
CN 23.70 24.09 30.45 29.15
CFv=∞, h=∞ 24.13 24.18 30.41 29.57
CFv=∞, h=2 24.14 24.58 30.52 28.84
CFv=∞, h=1 24.01 23.91 30.46 29.32
CFv= 4, h=∞ 23.93 23.57 29.88 28.71
CFv= 4, h=2 23.82 22.68 29.92 28.83
CFv= 4, h=1 23.77 21.42 30.10 28.32
CFv= 3, h=∞ 23.38 23.34 29.81 27.34
CFv= 3, h=2 23.30 23.95 30.02 28.19
CFv= 3, h=1 23.23 21.43 29.27 26.53

Hypegraph size measured by the aver-
age number of hyperedges (h = 1 for 
CF). “lattice” is the average number of 
edges in the original CN

Table 3

lang cz-en de-en es-en fr-en
CN 2,222.68 47,231.20 2,932.24 11,969.40
 lattice 1,723.91 41,403.90 2,330.04 10,119.10
CFv=∞ 230.08 540.03 262.30 386.79
CFv= 4 254.45 651.10 302.01 477.51
CFv= 3 286.01 802.79 349.21 575.17

＊3   We measure the hypergraph size before intersecting with 
non-local features, like n-gram language models.
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