3-10-2 データ処理部 搭載処理部(TCE-PRO) の構成

3-10-2 On-board data processing part Time-comparison-equipment processing unit (TCE-PRO)

木内 等 今江理人 高橋靖宏 後藤忠広 中川史丸 藤枝美穂 細川瑞彦 KIUCHI Hitoshi, IMAE Michito, TAKAHASHI Yasuhiro, GOTOH Tadahiro, NAKAGAWA Fumimaru, FUJIEDA Miho, and HOSOKAWA Mizuhiko

要旨

In satellite positioning systems, such as the Global Positioning System (GPS), the receiver's position is calculated from the measured pseudo-range of the received radio signal. This signal is generated by the satellite based on its on-board atomic clock. Any error in the on-board clock directly affects the pseudo-range. Synchronization between the clocks onboard satellites and clocks on earth is thus indispensable for the development of next-generation systems. The goal of our research is to establish a precise method for comparing the time between earth and satellite clocks. The time-comparison-equipment processing unit (TCE-PRO) on-board Engineering Test Satellite VII (ETS-VII) functions as the TCE-control unit; it controls data acquisition as well as digital data processing. It calculates the pseudoranges and instrumental delay from the code phases and carrier phases of a combined IF signal (the received signal, the transmitted signal, and the delay calibration signal), enabling the time to be synchronized between earth and satellite clocks.

[キーワード]

ETS-VIII, 衛星測位, 時刻比較, デジタル信号処理, Delay lock loop (DLL), Costas loop ETS-VIII, Satellite positioning, Time comparison/transfer, Digital signal processing, Delay lock loop (DLL), Costas loop

1 まえがき

衛星測位システムでは、衛星搭載時計の時刻 と地上で受信した時刻差から地上の位置を計測 するため、衛星上の時計と地上の時計の同期は 不可欠である。この同期を行うのがTCE^{[1][2]}で ある。本稿では、TCEのデジタル処理部TCE-PROについて記述する。TCE-PROは、HAC

●特集 ●技術試験衛星 Ш型(ETS-Ш)特集

(High-Accuracy Clock)からの基準信号とTCE-RF部から送られてくる衛星送信信号・地球から の受信信号・衛星局内校正信号の位相を測定す ることでそれぞれの遅延量を求め、地上-衛星 間の時刻同期を可能とする。局内分の遅延を補 償するため全段デジタル処理方式とし、入力直 後にまずデジタル化を行う。このため周波数変 換、復調もデジタル処理で行われる。

2 TCE-PROの機能

はじめに TCE-PRO の役割について簡単に紹介 する。図1に TCE-PRO のブロックダイアグラム を示す。

・ TCE 部の制御 (TCE control)

衛星本体のデータバス RIM との RS422 シリア ル伝送によるデータの送受信。高周波部の制御 及びステータス取得を行う。

・観測信号の収集 (Sampling & SSB D/C)

局内遅延差を除くためTCE-PRO全系デジタル 信号処理としている。周波数変換(Down convert: D/C)は、SSB(Single side band)変換する ためミキサ前段にフィルタを用いるのが通常で あるが、入手可能な衛星部品の回路規模の制約 がありFIR filter等を使用できない。このため IRM (Image rejection mixer)方式を採用した。 IRM 型デジタル周波数変換方式は、SSB用フィ ルタによる群遅延特性誤差を回避することにも 役立つ。周波数変換は粗・精周波数変換2段とし、 Local 発振器に VCO(Voltage Controlled Oscillator)のデジタル版であるNCO(Numerically Controlled Oscillator)を採用した。

・デジタル信号処理

一般にコード位相検出には遅延検波、非同期 型 Delay lock loop (DLL)、同期型 DLL などがあ り、搬送波位相検出には2逓倍、Costas loop など がある。TCE では、コード位相と搬送波位相を 検出するために、同期型 DLL によるコード追尾、 Costas loop による搬送波追尾を採用した。両 loop の制御は CPU (Phase control) により行われ、 誤差信号がコード追尾 (C/A code) NCO、ローカ ル発振器 (Carrier) NCO に与えられ制御される。 NCO 位相もしくは誤差信号位相を基に、コード 及び搬送波位相を取得する。

2.1 TCE部の制御

制御タイミング系の基本機能を具体的に列挙 する。

- ・衛星システム (RIM) との間でコマンド/テレ メトリ管理を行う。
- ・パラレル I/O を装備しており、高周波部 (TCE-RF)のステータス(Lock ステータス等)
 及び制御の入出力を行う。
- ・デジタル信号処理部とは別に衛星内部用にソ フトウエアから指定されるSV#に基づいた C/Aコード生成を行う。
- ・タイミング管理を行う。

2.2 観測信号の収集

TCE-RF部からのアナログ信号は、サンプリ ングされる。サンプリングは20.46Mspsで行われ る。ここで、衛星のドップラ精密追尾と大下駄 としての固定のドップラ分が考えられる。両者 を一度に補償することも可能であるが、NCOで 高周波を発生させることと高分解能で低周波を 発生させることは相反するため2段周波数変換を 採用した。1st local, 2nd local発振器には、NCOを 用い、SINE/COSINE信号を同時に作り出すこと でIRM 構成とし、SSB変換を実現している。ア ナログ信号イメージでのIRMの周波数変換原理 を図2に示す。図中において1st NCOは周波数の 大下駄を取り除き、2nd NCOは搬送波の精追尾用 に用いられる。これらのlocal信号は、後述の Costas loopの一部として機能している。

2.3 デジタル信号処理

ここでは、コード位相と搬送波位相の測定を 行う。

2.3.1 コード位相同期のためのDelay lock loop(DLL)

コード信号(コードチップ)の位相を得るため には、コードを必要とせず入力信号と半クロッ ク遅延させた入力信号との相関積分を行う遅延 検波方式もあるが、SNR (signal to noise ratio)の 面で有利なコード信号で逆拡散する DLL 方式を 採用した。DLLのブロックダイアグラムを図3に 示す。DLL回路は、受信器内部で発生した3種類 のC/Aコード(遅延ゼロ:Typ,、半クロックラ グ:Lag、半クロックリード:Lead)と入力信号 との相関積分を行い、コードの遅延量を測定す る。DLLには、非同期型(non-coherent)DLL、 r-dither型DLL、同期型(coherent)DLLなど幾 つか種類がある。ここで、それらの特徴を示す。 (i) 非同期型DLL

非同期型DLLは、入力信号とコード半クロック 分ずらしたコード信号とで振幅検波する方式で ある。非同期と呼ばれるのは、搬送波成分の補 償を行わない状態での処理のためである。

(ii) *τ*-dither型DLL

τ-dither型DLLは、非同期型DLLの半クロック ラグ、半クロックリード系のミキサ(EXOR)と 狭帯域バンドパスフィルタ、振幅検波器を1台に まとめたもので、時系列で半クロックラグ、半 クロックリードコードを切り替え、それに対応 して振幅検波器出力をラッチするものである。 これにより半クロックラグ、半クロックリード 系の電気・遅延特性を同一にできる。

(iii) 同期型 (coherent) DLL

同期型(coherent)DLLは、搬送波追尾処理(位相同期復調)系をDLL回路の前段に持ち、DLL 回路はベースバンドでの処理を行う。

TCE-PRO は同期型 (coherent) DLL に属し、 Costas Loopを用いた搬送波同期系と一体となっ た構造を持つ。いずれの DLL の場合も、3種類の コード (遅延ゼロ、半クロックラグ、半クロック リード) 及びミキサ (EXOR) と狭帯域バンドパス フィルタ、振幅検波器で構成される3系統の処理 系からなり、コードタイミングが一致した場合、 ミキサはコードチップ周波数の2倍の信号を出力 する。このため狭帯域バンドパスフィルタ (Loop filter) は、2倍のコードチップ周波数を中 心とした通過帯域を持つ。

次に DLL の位相引き込み手順を示す (図4参照)。

- ・コード位相が信号コードと1クロック以上ずれ ている場合、3系統の振幅検波器の出力は零、
- ・コード位相が信号コードと1クロックずれている場合、半クロックラグ系(もしくは半クロックリード系)の振幅検波器の出力のみ有り、
- ・コード位相が信号コードと1クロック以内の場合、すべての振幅検波器の出力有り、更に位相が一致した場合半クロックラグ、半クロックリード系の出力差は零。

この半クロックラグ、リード系の差信号をコー

●特集 ●技術試験衛星呱型(ETS-垭)特集

ド発生用VCO(NCO)もしくはコードシフトレジ スタの誤差信号(ゼロクロス点になるように制 御:Zero seeking)として用いることで、コード の位相同期系を組んでいる。この時、ラグとリ ード成分のノイズ(ホワイトノイズを仮定した場 合)成分に差があると図4最下部のような測定距 離誤差を生じる。

ここで、入力信号を次式のように仮定する。

 $S(t) = A \cdot C(t) \cdot D(t) \cdot \sin \omega t$

A:C/Aコード振幅、C(t):C/Aコード符号列、 D(t):航法メッセージ符号列、 ω :搬送波角周 波数。TCEでの受信波形は、伝播遅延量と送 信側時刻誤差を含めた量を τ_d とすると次式で 表される。

 $\mathbf{S}(\mathbf{t} - \tau_{d}) = \mathbf{A} \cdot \mathbf{C}(\mathbf{t} - \tau_{d}) \cdot \mathbf{D}(\mathbf{t} - \tau_{d}) \cdot \sin \omega (\mathbf{t} - \tau_{d})$

逆拡散のための内部発生コードパターンは、 局内遅延、内部時刻誤差等をτ₀とすると、

 $\mathbf{G}(\mathbf{t} - \tau_0) = \mathbf{C}(\mathbf{t} - \tau_0)$

逆拡散のため、受信波形と内部発生コードパ ターンミキシング後の結果は、

$$\begin{split} S(t - \tau_d) \cdot G(t - \tau_0) &= \\ A \cdot C(t - \tau_d) \cdot C(t - \tau_0) \cdot D(t - \tau_d) \cdot \sin \omega (t - \tau_d) \end{split}$$

ここで、 $C(t-\tau_d)$ と $C(t-\tau_0)$ の位相がそろった場 合、つまり $\tau_d = \tau_0$ の場合 $C(t-\tau_d)$ と $C(t-\tau_0)$ は1と なる。この時 D (t- τ_d)の変化時間以内は正弦波 (sin ω (τ_0 - τ_d))が得られ、拡散帯域から搬送波周 波数にパワーが集まる。一方位相がそろってい ない場合では、1と-1の交番となりコード拡散 が解けない拡散状態のままである。

DLLの相関波形は、マルチパスの影響がある と複数の相関波形の集まりとして検出され、そ の相関波形からマルチパスの影響が探られる。 今回は地上の指向性の高いアンテナと静止衛星 という条件を考慮し、マルチパスの影響は無視 できるものと考えている。

2.3.2 搬送波位相同期のためのCostas loop

搬送波位相を得るためには、コードを必要と しない入力信号の自乗検波方式もあるが、SNR の面で有利な同期搬送波再生の方式としてPLL (Phase lock loop)を応用したCostas loopが知ら れている。Costas loopのブロック図を図5に示す。 入力信号は90度位相の異なったVCO出力と乗算 (第1、第2乗算器:ミキサ)されローパスフィル タ(LPF)を通って同相成分と直行成分(通常LQ 成分と呼ばれる)に分離される。この信号は乗算 (第3乗算器)されLoop filterにより高周波成分が 除去されVCOの制御信号となる。第3乗算器で は、コード拡散された状態でも同一コードが同 一タイミングで掛け合わされることになり、搬 送波位相誤差のみが得られる。

Costas loop に入力される変調信号 y(t) は次式 で表すことができる。

 $y(t) = \sqrt{2}A \cdot D(t)\cos(\omega t + \theta)$

ここで、ベースバンド信号振幅をA、ベース バンド信号(±1)をD(t)、搬送波角周波数をω。 搬送波位相を θ_i とする。90度位相の異なった VCO出力を $\sqrt{2}\cos(\omega_c t + \theta_0)$ 、 $-\sqrt{2}\sin(\omega_c t + \theta_0)$ としてy(t)とミキシングを行う。高周波成分を フィルタで除去後はそれぞれとA·D(t) cos($\theta_i - \theta_0$)とA(t) sin($\theta_i - \theta_0$)が得られる。Costas loopの 誤差信号は、これらの積として得られる。

$$\frac{A^2 \cdot D^2(t)}{2} \sin 2(\theta - \theta_0)$$

ここで $D^2(t)$ は同一コード同士の掛け算となる ので1、 $(\theta_i - \theta_o)$ が十分に小さければ $2(\theta_i - \theta_o)$ に 比例した位相誤差が得られる。つまり Costas Loopからの再生搬送波には、180度の位相 ambiguity が存在する。これは、PSK 信号の180度位 相をジャンプさせる変調方式によるもので、ど

ちらの相に位相同期したか未定なためである。 以上をまとめた構成図を図6に示す。

3 TCE-PROの実際の構成

この章では実際の回路構成について述べる。 TCE-PROは、TCEの制御・観測信号の収集機 能を受け持つCPU部及びデジタル信号処理機能 を受け持つ送・受・校正信号デジタル信号処理 部からなり、240×250mm基板上に構成されてい る。全体概略図を図7に示す。CPU部及び送・ 受・校正信号デジタル信号処理部は、すべて耐 放射線を考慮した部品での構成のため、地上系 で使用可能な高性能・高集積度の部品が使えな い制約があり、処理量及び回路規模を小さくす ることが第1に求められた。三つのデジタル信号 処理部は互換性があり、全回路FPGA (Field programmable gate array)を基本構成としている。 DLL, Costasの誤差位相の検出とNCO 制御は CPUにより行われる。

3.1 CPU部

CPU部は、CPU本体、テレメトリ系、制御タ イミング系、サンプリング系、C/Aコード発生 系からなる。

3.1.1 CPU本体

CPUには耐放射線性能の実証された 80C286/125MHz(クロックリセット制御82C284) を用いている。メモリ空間は、EPROM(16bit× 32kword)、EEPROM(16bit×128kword)、 SRAM(16bit×128kword)である。水晶基準クロ ックは衛星打ち上げ時の振動等による損傷を考 慮し、自動切替え及びSMコマンドで切替え可能 なA系/B系を用意している。さらに両系統が 断となった場合は、高周波部の20.46MHzが選択 される。切替え状態は、SDコマンドでテレメト リからモニタできる。また、ソフトウエアの異 常検出のためのwatch doc timerを備える。 EPROM / EEPROM選択により、起動ソフトの 選択が可能な構造とした。

3.1.2 テレメトリ系

RIM との RS422 シリアル伝送により SM コマン ド(16ビット単位で RIM より送信)、SD コマン ド(RIM ヘテレメトリデータ送信)を用いて行う。 システムとのやり取りを図8に示す。

3.1.3 制御タイミング系

00分00秒000ミリ秒~59分59秒999ミリ秒の 時刻カウンタと0秒000ミリ秒~9秒999ミリ秒 のPP (Parameter Period)周期カウンタ及び割り 込み用の24ビットタイマーを備える。それぞれ 最大値までいくと0から再カウントを行う。PP 周期カウンタは、ソフトウエアよりミリ秒単位 で設定され、周期的な割り込みを行う。すべて のカウンタは、外部信号でリセット可能である。

3.1.4 サンプリング系

TCE高周波部より供給される送・受・校正信

号の混ざった90度位相の異なったアナログ信号 (2.387MHz±1.023MHz:0dBm)を入力し、サン プリング(1ビット、20.46Msps)によりデジタル 信号に変換後、各信号処理ユニットに供給する。 1ビット量子化によるコヒーレンスのロスは、 Nyquistレートを維持した場合でも36%[3]に及 ぶが、すべて振幅情報であり位相情報の損失は ない。振幅変動の影響を受けにくく、今回のよ うなタイミング情報を効率的に取得するシステ ム向きと言える。アンチエリアシングフィルタ は、高周波部(TCE-RF)の出力段に設けられてい る。デジタル化された信号は、次段のデジタル 信号処理部(送・受・校正信号処理部)に渡される。

3.1.5 C/Aコード発生系

逆拡散用C/Aコードをソフトウエアから指定 されたSV#に基づき発生する。C/Aコードは、 CPU部からの1.023MHzタイミングに同期して出 力される。コードの1ビットシフト(及び1ビッ ト 削除/複製)機能を持つ。コードサーチ時の 位相微調機能のために20ビット可変シフトレジ スタを持っており、20.46MHzの分解能で位相調 整可能である。C/Aコードは、DLL 回路のため にTypical, 1/2 bit lead, 1/2 bit lagの3種類の位 相コードを同時生成する。

3.2 デジタル信号処理部(送・受・校正信号処 理部)

デジタル信号処理部(送・受・校正信号処理部) は、それぞれ衛星の送信信号、地上からの受信 信号、衛星局内遅延校正信号のコード及び搬送 波位相をCPU部からのタイミング信号を基に同 時計測する。測定結果はCPU部により読み出さ れ、処理後テレメトリ等により出力される。

3.2.1 デジタルダウンコンバータ

入手可能な耐放射線対応のCPU、FPGAがか なり非力であるため、当初想定していたFIRフ ィルタを用いたSSB方式ではなく、IRM方式と した。

NCOは、位相レジスタ(Φ)、加算位相レジス タ($\Delta \Phi$)、加算器及びSINE/COSINE ルックアッ プテーブルからなる。ブロックダイアグラムを 図10に示す。位相レジスタのフルビットで0~ 360度の位相を表す。 $\Delta \Phi$ は、PPクロックにより 制御され、ローカル周波数に応じた $\Delta \Phi$ の値が 1.023MHz clockごとに Φ に加算されていく。こ の位相に対応した振幅がSINE/COSINE ルックア ップテーブルから読み出され出力される。位相 レジスタの値はPPごとにラッチされ読み出しが 可能となっている。

(i) 1^{st} local

位相レジスタ、加算位相レジスタには、24ビ ットのレジスタを用いている。ローカル (SINE/COSINE)信号は3レベル近似で表され、 位相レジスタの上位3ビットと SINE/COSINEル ックアップテーブルとの関連を図10に示す。3レ ベル近似を用いることで周波数変換用ミキサを EXOR 論理回路で実現可能となる。3レベル近似 (-1,0,1)を表すには、2ビット必要である(図11)。 ルックアップテーブル出力は2ビットとなるが、 MSBは符号を表し、LSBは振幅を表す。ここで LSBが0のものは、最終段の積分回路の動作を停 止させる役割を持つBlank 信号と定義しておく。 この定義により、1st ダウンコンバータ出力2ビッ トのうち、1ビットのみを2nd ダウンコンバータ に送ればよくなり、回路規模を小さくできるメ リットがある。

(ii) 2nd local

位相レジスタ、加算位相レジスタには、32ビ ットのレジスタを用いている。ローカル (SINE/COSINE)信号は15レベル近似で表され、 位相レジスタの上位6ビットと SINE/COSINE ルックアップテーブルとの関連を図10中に示す。 この方式では、図2の原理から明らかなように 符号を一か所変えることで、ダウンコンバータ をアップコンバータにも変更可能である。デジ

●特集 ●技術試験衛星呱型(ETS-呱)特集

タルIRMにおいて、源信号:1st Local:2nd Local の周波数比を512:500:5 にした場合をシミュレー トした図を図12に示す。それぞれ源信号1ビッ ト2レベル、1st Local2ビット3レベル、2nd Local4ビット15レベルの信号を用いた。上の二 つは、1段目のIRM 周波数変換の結果(I:inphase、Q:quadrature 成分)であり、3レベルで の出力となっている。下の二つは2段目のIRM 周波数変換の結果を示したもので、イメージの 折り返しの出やすい周波数でのシミュレーショ ンとしてあるのが、レベルの抑えられたイメー ジ周波成分が低周波の中に乗っている。本来は、 この出力後に簡単なFIRフィルタを通すのが望 ましい。

3.2.2 相関積分カウンタ

24ビットのUp/Downカウンタにより構成され る。Typical, 1/2 bit lead, 1/2 bit lagの3種類のデ ータそれぞれにSIN成分、COS成分のカウンタ が用意されている。Up/Downカウンタの制御は、 逆拡散(相関演算)結果5ビットのMSB符号ビッ トにより行われる。この値は、積分時間ごとに ラッチされCPUにより読み出される。ラッチ終 了時積分カウンタはリセットされる。Typicalの I,Q成分各々のSIN成分、COS成分よりATAN を計算することにより位相差を計算でき、Costas loop 第3掛け算器と同一動作をCPU上で行うこ とができる。

なお、これらの回路は、同期方式、非同期方 式の両者に対応可能であり、解析側の要求でど

ちらをとるか決定される。また、制御ソフトウ エア、FPGAの地上からの書き換えも考慮した。

4 謝辞

本研究において、実際の装置製作を行ってい ただいたコスモリサーチ社の広島さんに感謝い たします。

参考文献

- 1 高橋靖宏ほか, "TCE-高周波部", 本特集.
- 2 高橋靖宏,今江理人,木内等,細川瑞彦,相田正則,後藤忠広, "ETS-VШ搭載用高精度時刻比較装置による実験 計画",電子情報通信学会論文誌B, Vol.184B, No.12, pp.2101-2107, 2001.12.
- 3 J.H.VanVleck, and D.Middleton, "The spectrum of clipped noise", Proc. IEEE, Vol.54, No.1, pp.2-19.1966.

赤内 等 無線通信部門光宇宙通信グループ主任 研究員 博士(工学) 電波干渉計、空間光伝送

高橋靖宏

電磁波計測部門時間周波数計測グルー プ主任研究員 衛星通信、衛星測位システム

中州史丸

電磁波計測部門時間周波数計測グルー プ専攻研究員 博士(理学) 衛星測位、衛星時刻比較

細川瑞彦 電磁波計測部門原子周波数標準グルー プリーダー 理学博士 原子周波数標準、時空計測

今江理人

電磁波計測部門時間周波数計測グルー プリーダー

周波数標準、特に高精度時刻比較

後藤忠広 電磁波計測部門時間周波数計測グルー

プ研究員 GPS時刻比較

藤枝美穂 電磁波計測部門時間周波数計測グルー プ専攻研究員 博士(理学) 衛星測位、衛星時刻比較

