5-2 ミリ波帯光ファイバ無線システムにおける 高密度多重伝送とフォトニック信号処理

5-2 High-Spectral Density Multiplexing Transmission and Photonic Mixing for Millimeter-Wave-Band Radio-on-Fiber Systems

久利敏明 山下 司 戸田裕之 北山研一 KURI Toshiaki, YAMASHITA Tsukasa, TODA Hiroyuki, and KITAYAMA Ken-ichi

要旨

本稿では、ミリ波帯光ファイバ無線(ROF)システムにおける高密度波長多重(DWDM)技術を採用した 二つのシステム構成について述べる。第1のシステム構成では、光周波数重畳配置 DWDM ROF 伝送を実 現するために、アレー導波路格子(AWG)を採用して構成した多重分離技術を中心に述べる。第2のシステ ム構成では、既に提案されているフォトニックダウンコンバージョン法を DWDM ROF システムに拡張、 実現する方法について述べる。第2のシステム構成については、さらに 25GHz 間隔で2 チャネルの 60GHz 帯 DWDM ROF 伝送にフォトニックダウンコンバージョン法を適用した場合について、光ファイ バ伝送品質を通じて実験的に評価した結果について議論する。

Two system architectures based on dense wavelength division multiplexing (DWDM) for millimeter-wave-band (mm-wave-band) radio-on-fiber (ROF) systems are described. One architecture consists of a wavelength multiplexer and demultiplexer with arrayed waveguide gratings (AWGs) for optical-frequency-interleaved DWDM ROF transmission. The other architecture is based on a photonic downconversion technique that is used in DWDM ROF systems. A 25-GHz-spaced, 60-GHz-band DWDM ROF transmission with photonic downconversion is experimentally demonstrated.

[キーワード]

高密度波長多重, ミリ波, 光ファイバ無線, ファイバ分散, フォトニックダウンコンバージョン Dense wavelength division multiplexing, Millimeter-wave, Radio-on-fiber, Fiber dispersion, Photonic down-conversion

1 はじめに

ミリ波帯光ファイバ無線(ROF)システムでは、 マイクロ波帯ROFシステムに比べて高周波の電 波を用いるため、各々のセルサイズは小さくな る一方、広いサービスエリア、大容量通信、シ ステムコスト低減は依然として要求され、一つ の制御局(CS)と多数のアンテナ基地局(BS)の間 でいかに効率良くミリ波帯ROF信号を伝送する かが重要な課題となっている。将来の光ファイ バアクセス網における一つの解決策として、高 密度波長多重(DWDM)は大変有力な伝送技術で あり、これまでにも幾つかのDWDM ROFシス テムが報告されてきた[1]-[4]。光周波数利用効率 を更に向上させるため、ファイバブラッググレ ーディング(FBG)を採用して構成した多重・分 離器による光周波数重畳配置技術も提案されて いる[5]。一方、著者らはこれまでに、システム コスト低減と受信感度向上を特徴とする、ミリ 波帯 ROF システムにおけるフォトニックダウン コンバージョン法を提案してきた[6]。本稿では ミリ波帯 ROF システムにおけるDWDM 技術を 採用した二つのシステム構成について述べる。 第1のシステム構成では、光周波数重畳配置 DWDM ROF 伝送を実現するために、アレー導 波路格子 (AWG) を採用して構成した多重分離 技術を中心に述べる。第2 のシステム構成では、 既に提案されているフォトニックダウンコンバ ージョン法を DWDM ROF システムに拡張、実 現する方法について述べる[7][8]。第2のシステム 構成については、さらに25GHz 間隔で2チャネ ルの 60GHz 帯 DWDM ROF 伝送にフォトニック ダウンコンバージョン法を適用した場合につい て、光ファイバ伝送品質を通じて実験的に評価 した結果について議論する[9]。

2 DWDM ROF システム構成

システムコスト低減の観点から、DWDMチャ ネルの波長割当てはITUグリッドに沿うことが 望ましい。この場合、60GHz帯ROF信号の最小 チャネル間隔は、チャネル間干渉を避けるため、 光両側波帯変調 (DSB) 形式と光単側波帯変調 (SSB) 形式について、それぞれ 200GHz 及び 100GHzとなるが、光周波数資源を十分に活用し ているとは言えない。これは、光周波数重畳配 置によって容易に解決できる。光SSB形式の 60GHz帯ROF信号を25GHzのチャネル間隔で光 周波数重畳配置して多重化した場合、光周波数 利用効率は元の4倍まで向上させることができ る。光周波数重畳配置のチャネル間隔を小さく することで光周波数利用効率の更なる向上は期 待できるが、チャネル間干渉が起きないよう周 波数配置の設計に十分注意する必要がある。現 時点では、25GHz間隔のDWDMシステム用の光 デバイスが先進的かつ実用的であるため、以下 では25GHz間隔DWDM ROF システムについて 述べる。

2.1 システム構成 I

図1はスター型トポロジーを有する一般的な DWDM ROF システムの構成を示している。そ れぞれのアンテナ基地局 (BS) からのアップリン ク ROF 信号は DWDMROF 多重化器 (λ -MUX) で光周波数重畳配置による波長多重化がなされ、 1本の光ファイバ伝送路を通じて遠方の制御局 (CS)まで伝送される。ここで、ITUグリッドに 従って配置された波長 (λ_n , n = 1, 2, · · · , N)

は、それぞれ各基地局 (BS_n) に対応して割り当て られているものとする。CS 側で受信された DWDM ROF 信号は、DWDM ROF 多重分離器 (λ -DEMUX) により波長多重分離され、光・電 気 (O/E) 変換器で各々光検波された後、それぞ れ個別に無線周波数帯処理器 (RF-band processor) により復調される。以下では、光周波数重畳 配置 DWDM ROF 信号の多重・分離の実現につ いて述べる。

図2 に λ-MUX の構成及び光スペクトル解説 図を示す[7]。λ-MUXでは、ほぼ同等の機能を有 する二つの構成法が考えられる。第1のλ-MUX の構成は図2(a) に示すように、N×2-AWG、高 フィネスファブリペロー (FP) 光フィルタ、光サ ーキュレータから成る。一方、第2のλ-MUXの 構成は図2(b)に示すように、N×2-AWGと結合 率可変光カップラ(OVC)から成る。図2(c)に示 すように、ITUグリッドに従って割り当てられ た光搬送波を有する各BS からのROF信号は AWG の各ポートに入力される。AWGは入力チ ャネルA_Mから搬送波成分B_Mと側帯波成分の片 側 C_Mを取り出し、それぞれを個別の決められた ポートに導く。取り出された搬送波成分 B_Mと側 帯波成分 C_M はOVCによって合波され、所望の DWDM ROF 信号 D_Mを生成する。本多重化法で は、光周波数重畳配置DWDMの多重化器として の動作だけでなく、全チャネルに対する光SSB フィルタとしても動作することに注意されたい。 第2のλ-MUXの構成では、さらにOVCの結合 率を変えることにより、全ROFチャネルの変調 度を同時に調整できるという機能も有している。

図3 に λ -DEMUXの構成及び光スペクトル解 説図を示す[8]。図3(a)に示すように、 λ -DEMUX の構成は、高フィネスFP、OC、2×*N*-AWGか ら成る。ここで、第2の λ -MUX(2(a))との違い

は OC の方向のみである。 $f_c \ge f_{RF}$ は、チャネル間 隔及び RF 搬送波周波数である。それぞれの ROF 信号は図 3 (b) の A_p に示されるように、光 SSB 形式であるとする。光周波数重畳配置 DWDM ROF 信号 A_p に対し、FP はその透過特性と反射 特性を用いて光搬送波群 B_p と側帯波成分群 C_p に 分離する。後段の AWG では、分離された光搬送 波群 B_p と側帯波成分群 C_p から、同じチャネルの 成分を一つの出力ポートに導き、所望の ROF 信 号 D_p を出力する。こうして、光周波数重畳配置 DWDM ROF 信号は多重分離される。

2.2 システム構成Ⅱ

図4はフォトニックダウンコンバージョン法を 採用したDWDM ROFシステムの構成である。 ここで、フォトニックダウンコンバージョンと は光リンクを通してRF 帯から中間周波数(IF) 帯に電波の周波数を変換する機能と定義する[6]。 受信されたDWDM ROF信号は、まずフォトニ ックダウンコンバージョンのための前処理が施 され、 **-DEMUX で波長多重分離が行われる。 本システム構成の λ-DEMUX は AWG のみで構 成されている。多重分離された光信号は、それ ぞれO/E変換により光検波され、IF 帯で復調さ れる。図4に示されるように、多重化されたすべ てのROF信号が同時にフォトニックダウンコン バージョン処理を受けることになる。さらに、 システム構成Ⅱでは受信側に高周波電気回路が 不要なため、多重数が増加してもシステムコス トが大幅に増すことがない、という利点を有す る。

図5にフォトニックダウンコンバージョン法を 用いたDWDM ROF システムのスペクトル配置 を示す。図5(a)においては光ファイバの分散の 影響を避けるためにROF信号は光SSB形式であ るとし、*Cnと Un*は、第*n*チャネルの光搬送波と

上側帯波 (USB) を示している。また、 f_{cn} [= c/λ cn] bf_{RF} は、第nチャネルの光搬送波周波数と RF 搬送波周波数である。ここで、cは真空中の 光速を表し、光搬送波はITUグリッドに沿って $f_{G} [= f_{c(n+1)} - f_{cn}]$ 間隔で等間隔に配置されている ものとしている。フォトニックダウンコンバー ジョン法では、まずDWDM ROF 信号は等分さ れ、図5(b)に示すように、それぞれの周波数 が $- f_{10}/2 \ge f_{10}/2$ だけダウンシフト及びアップシ フトされる。ここで、 C_{dn} , C_{un} , U_{dn} , U_{un} は、第 nチャネルのダウンシフトされた光搬送波、アッ プシフトされた光搬送波、ダウンシフトされた USB、アップシフトされた USB を示している。 Cunと Udn に着目すると、この光周波数シフトに よって、元の光搬送波成分 (C_n) と USB 成分 (U_n) が互いにfuoだけ近づいたとみなすことができる。 次に、互いに接近した一組の光周波数成分 S_a $(C_{uv} \ge U_{dv})$ は図5(c)に示すように、 λ -DEMUX によって他の光周波数成分の組と分離されて抽 出される。分離された光周波数成分の組ごとに 光検波される。結果として、マイクロ波帯 (*f*_{IF} $[= f_{RF} - f_{LO}])$ にダウンコンバートされた所望の IF 帯信号が出力される。こうして、DWDM ROF システムにおいてもフォトニックダウンコ

ンバージョンが可能となる。

3 実験

図6に示す実験系を用いて、DWDM ROF シス テムにおけるフォトニックダウンコンバージョ ン法の検証を行った。実験系は、二つの簡易構 成BS、25kmの標準単一モード光ファイバ(SMF) 及び一つのCS から成る。それぞれのROF 信号 は、155.52Mb/sの差動位相シフトキーイング (DPSK) データを有する59.6GHzのRF 信号を用 いて生成した。100mの光ファイバは二つのチャ ネル間のデータ相関をなくすために用いられた。 CS は主として、光周波数シフトのための二電極

型マッハツェンダー変調器 (MZM)、多重分離の ための AWG 及び O/E 変換としての光検波器で 構成された。

ここで、MZMは搬送波抑圧両側帯波(DSB-SC) 変調器として動作するように設定された。光ス ペクトルの測定結果を図7に示す。二つの60GHz 帯 ROF 信号は、その光搬送波の間隔が25GHz に 設定されたので、図7(a)に示すように、光周波 数重畳配置されたものとなっている。ここで、 1551.9nmと1552.1nmの光搬送波のスペクトル線 幅は共に300 kHz であった。なお、実験系の簡易 化のため、ROF 信号の合波には3dB 光カップラ が用いられたため、多重化後のROF 信号は光 DSB 形式のままであることに注意されたい。図7 (b)から分かるように、前章で示したとおり、光 領域で、光スペクトルはダウンシフト及びアッ プシフトされた。DSB-SC 変調器への入力には 28.5GHzの正弦波を与えたので、光スペクトルは お互いに57.0GHz だけ引き離されるように周波 数シフトされていることが分かる。図7(c)と(d) はチャネル1と2のAWG出力を示しており、そ れぞれ、-25dBと-40dBの不要信号抑圧比を もって分離されていることが分かる。測定され た光スペクトルの上に描かれたスペクトル配置 図からも分かるように、分離された信号には搬 送波成分と側帯波成分の二つが含まれており、 その搬送波成分と側帯波成分とは2.6GHz[= 59.6-57.0 GHz]だけ離れている。ここで注目す べきは、多重化されたROF信号が光DSB形式で あっても、多重分離後にはIF帯の周波数間隔を 有する光SSB形式のROF信号になっていること である。これは原理的に耐光ファイバ分散特性 を有することを意味する。

DWDM ROFシステムにおけるフォトニック ダウンコンバージョンを検証するため、データ を重畳しない場合の光検波出力を測定した。図8

特集 光COE特集

に示されるように、光検波出力はチャネル1、2 共に所望のマイクロ波帯に表れた。また、それ ぞれのスペクトル線幅も極めて狭いことが確認 できる。すなわち、光リンクを通じて、二つの 59.6GHzのRF帯信号は同時に2.6GHzの所望のIF 帯信号に変換されたことを示している。

さらに、フォトニックダウンコンバージョン 法を用いたDWDM ROFシステムの通信品質に ついても調査した。図9に25kmのSMF伝送時 のビット誤り率(BER)を示す。両チャネルとも 10⁹を達成し、エラーフリーの性能を示した。ま た、受信信号光電力の観測域内ではBERフロア ーも表れなかった。これらの結果から、10⁹の BERを達成するためには、25dB及び40dB程度

のチャネル間干渉は十分無視できることを示し ている。以上より、本フォトニックダウンコン バージョン法は将来のDWDM ROFアクセスネ ットワークにおいて十分適用可能であると結論 づけられる。

4 まとめ

ミリ波 DWDM ROFシステムにおいて二つの システム構成について議論した。第1の構成では、 AWGにより構成された多重器及び多重分離器を 用いて光周波数重畳配置 DWDM ROF 信号を伝 送可能であることを示した。第2の構成では、シ ステムの低コスト化の要求を満たすために、 DWDM ROFシステムにおけるフォトニックダ ウンコンバージョン法を提案した。さらに、2チ ャネルの DWDM ROF 信号のフォトニックダウ ンコンバージョン法を実験的に検証し、また、 25km の SMF 伝送も十分可能なことを示した。 このことから、フォトニックダウンコンバージ ョン法は将来の DWDM ROF アクセスネットワ ークにおいて十分実用な技術であると結論づけ られる。

謝辞

本研究を遂行するに当たり、絶えずご支援頂 いた大谷直毅光エレクトロニクスグループリー ダー、板部敏和基礎先端部門長、飯田尚志元通 信総合研究所理事長に深く感謝いたします。

参考文献

- K. Kitayama, "Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation", IEEE/OSA J. Lightwave Technol., Vol. 16, No. 6, pp. 969-976, June 1998.
- 2 K. Kitayama, T. Kuri, K. Onohara, T. Kamisaka, and K. Murashima, "Dispersion effects of FBG and optical SSB filtering in DWDM millimeter-wave fiber-radio systems", IEEE/OSA J. Lightwave Technol., Vol. 20, No. 8, pp. 1397-1407, Aug. 2002.
- 3 K. Kojucharow, M. Sauer, H. Kaluzni, D. Sommer, C. Schaffer, "Experimental investigation of WDM channel spacing in simultaneous upconversion millimeter-wave fiber transmission system at 60 GHz-band", in IMS2000 Tech. Dig., Vol. 2, WE4C-7, 2000, pp. 1011-1014.
- 4 A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, "Tandem single sideband modulation scheme for doubling spectral effciency of analogue fibre links", Electron. Lett., Vol. 36, No. 13, p. 1135-1136, June 2000.
- 5 C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, "Technique for increasing optical spectral efficiency in millimetre-wave WDM fibreradio", Electron. Lett., Vol. 37, No. 16, pp. 1043-1045, Aug. 2001.
- 6 T. Kuri, and K. Kitayama, "Novel photonic downconversion technique with optical frequency shifter for millimeter-wave-band radio-on-fiber systems", IEEE Photon. Technol. Lett., Vol. 14, No. 8, pp. 1163-1165, Aug. 2002.
- 7 H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, "25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems", in Proc. International Topical Meeting on Microwave Photonics (MWP2003), Budapest, Hungary, 2003, pp. 287-290.
- 8 H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, "Demultiplexing using an arrayedwaveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems", IEEE/OSA J. Lightwave Technol., Vol. 21,Nno. 8, pp. 1735-1741, Aug. 2003.
- 9 T. Kuri, H. Toda and K. Kitayama, "Dense wavelength division multiplexing millimeterwave-band radio-onfiber signal transmission with photonic downconversion", IEEE/OSA J. Lightwave Technol., Vol. 21, No. 6, pp. 1510-1517, June 2003.

久利敏朝 基礎先端部門光エレクトロニクスグル −プ主任研究員 博士(工学) 光通信システム

をためた **戸田裕之** 大阪大学大学院工学研究科講師 工学 博士 光ファイバ通信、非線形ファイバ光学

(山下) 一一 大阪大学大学院工学研究科(現) 三菱 電機株式会社) 光ファイバ通信

北山研一 大阪大学大学院工学研究科教授 工学 博士 フォトニックネットワーク