7-4 MATRAS(テラヘルツ大気放射伝達モデル)

7-4 MATRAS (Model for Atmospheric TeraHertz Radiation Analysis and Simulation)

バロン フィリップ メンドロック ヤナ 笠井康子 落合 啓 瀬田孝将 鷺 和俊 鈴木広大 佐川英夫 ウルバン ヨアヒム Philippe Baron, Jana Mendrok, KASAI Yasuko, OCHIAI Satoshi, SETA Takamasa, SAGI Kazutoshi, SUZUKI Kodai, SAGAWA Hideo, and Joachim Urban

要旨

NICT のテラヘルツプロジェクトで開発中の、MATRAS (テラヘルツ大気放射伝達モデル)の現状に ついて報告する。MATRAS は、テラヘルツ周波数帯が大気リモートセンシングや通信システムにもた らすメリット及び地球のエネルギー収支におけるテラヘルツ波大気熱放射の影響を解析するために使 用される。本稿では、モデル開発の第1段階として散乱がなく水平方向に均質な大気、例えば地球物 理学的パラメータが高度にのみ依存するようなケースについて論じる。現在開発中の散乱モジュール については、本号の別稿で取り上げる。本モデルは、Microwave Observation Line Estimation and REtrieval (MOLIERE)のコードがベースになっている。対象周波数をサブミリ波長域から近赤外領域に 拡張するために、吸収係数モジュールを改良した。また複数の光路及び任意の受信器位置を扱うこと のできる、新しい放射伝達モジュールを実現した。MATRAS には、オリジナルの MOLIERE 計測器シ ミュレータと、リトリーバル用コードが備わっている。検証の方法について説明したあと、現在の応 用例を幾つか提示する。最後に、大気中の水平方向に不均一な場合のモデル化を含め、次の開発ス テップについて説明する。

We describe the current status of the Model for Atmospheric TeraHertz Radiation Analysis and Simulation (MATRAS) that is being developed in the framework of the NICT THz project. This code aims to be used for studying the insterest of the THz frequency region for atmospheric remote sensing, communication systems and estimate the impact of the THz thermal atmospheric emission in the Earth energy budget. This paper presents the first stage of the model development that concerns a non scattering and a horizontally homogeneous atmosphere, e.g., the geophysical parameters are only altitude dependent. A scattering module is being developed but it is presented in an other paper in this issue. The model is based on the Microwave Observation and Lines Estimation and REtrieval code (MOLIERE). The absorption coefficient module has been modified in order to extend the frequency coverage from the submillimeter wavelength to the near InfraRed region. A new radiative transfer module has been implemented that can handle the different types of optical paths and any location for the receiver. MATRAS includes the original MOLIERE instrument simulator and retrieval codes. The validation methodology is discussed and some examples of the current applications are given. The next steps of the development are presented in the conclusion including the modelling of the horizontal inhomogeneties in the atmopshere.

[キーワード]

MATRAS, 放射伝達, テラヘルツ, 大気伝搬, 大気リモートセンシング MATRAS, Radiative Transfer, Terahertz, Atmospheric propagation, Atmospheric remote sensing

1 はじめに

地球の熱放射スペクトルを観測することによ り、大気の化学組成、温度及び力学、さらには雲 の微視的・巨視的特性に関する情報が得られる。 (1)気候とその将来の展開及び(2)汚染とバイオマ ス燃焼が大気組成に与える影響を理解するには、 下記に示すように自由対流圏(境界層より上の領 域)と下部成層圏に特に注目する必要がある。

(1) 水蒸気 (H₂O)、オゾン (O₃) 及び氷晶雲に よって生じるテラヘルツ帯スペクトルレンジにお ける上部対流圏の放射は、地球の放射収支に大き く寄与する^[1]。しかし、この寄与については、い まだに詳しいことが分かっていない。それは現在 の計測装置が限られること及び上部対流圏の状態 が極めて変化に富むことによる^[2]-^[4]。

(2)汚染とバイオマス燃焼は、大気化学成分の 重要な発生源である[5]。長寿命の化学種は地表で 生成され、自由対流圏及び下部成層圏へと運ばれ る[6][7]。汚染物質は空気のクオリティを劣化させ、 その酸化能力を低下させる。

直下方向(ナディア方向)及び大気周縁方向(リ ム方向)の衛星搭載サウンダは、現在のところサ ブミリ波より長波長の領域[8]-[10]もしくは遠赤 外(650 cm⁻¹)より短波長の領域[11][12]で運用さ れている。 $100 \sim 500 \,\mathrm{cm}^{-1}$ のテラヘルツ帯スペク トル領域(遠赤外領域ともいう)の観測は、まだ実 現されていない。この領域は大気の透過率が大き く変化する点が特徴であり、ナディア方向サウン ディングが、下部対流圏まで可能になる窓領域が 存在する(後掲の図を参照)。大気熱放射のスペク トルは、最強の H₂O のスペクトル線が卓越して いる。またテラヘルツ波の観測は、赤外波長での 観測に比べて対流圏の雲に対する感度が低く、か つ感度の傾向が異なると考えられる。さらに、こ の領域には、微量気体によるスペクトル線が多数 存在する。

Far-InfraRed Spectroscopy of the Troposphere (FIRST)の測定器によって示されたように[13]、 テラヘルツ帯を含む全赤外領域をカバーする衛星 搭載センサが、新技術によって開発可能となって いる。そのため近い将来における応用可能性とい う観点で、テラヘルツ帯サウンダの能力を予測す ることが一つの興味深いテーマになる。 情報通信研究機構(NICT)では、テラヘルツプ ロジェクトの一環として、MATRAS(テラヘルツ 大気放射伝達モデル)の開発を行っている[14]。テ ラヘルツプロジェクトの目的は、様々な応用分野、 例えば通信や大気科学などを対象にテラヘルツ技 術を開発することにある。本稿では大気科学分野、 より具体的には地球の大気リモートセンシングに ついて論じる。ただし、MATRASはこのほかに も、テラヘルツ帯の大気熱放射が地球のエネル ギー収支に与える影響の予測や、金星や火星など 他の惑星大気の観測にも使用される。大気リモー トセンシングの場合、MATRASは測定装置の概 念設計、その性能の定量化及び観測結果の処理に 用いられ、最終的に地球物理学的パラメータの推 定が行われる。

MATRAS It, Microwave Observation LIne Estimation and REtrieval (MOLIERE) のコードを ベースとする[15]。このコードは、フランス・ボ ルドー天文台で開発され、Odin 衛星に搭載され た、サブミリ波放射計(SMR)によるミリ波及び サブミリ波の観測値処理を目的としている[16]。 MOLIERE は、ミリ波及びサブミリ波の波長域を 対象とするクリアスカイ放射伝達モデルを備える ほか、受信器シミュレータとインバージョンコー ドを備えている。このコードは、衛星、地上設置 観測器[17] 又は下方観測の気球や航空機に搭載さ れるサウンダに対して使用できる。しかし、直上 方向と直下方向の両方の観測形態を考慮する必要 のある場合、受信器が大気中(例えば気球ないし 航空機)に存在するときには、さらにリム方向の 観測も考慮する必要があるが、このような時は、 このコードを使用することができない。これを MATRAS では、吸収係数モジュールの能力を近 赤外領域まで拡張したほか、複数のジオメトリの 光路及びあらゆる受信器位置が一つの関数で扱え るよう、より一般的な放射伝達モジュールを開発 した。放射伝達における雲の影響を考慮に入れた 散乱モジュールについても、現在開発中である。 なお、MATRAS の周波数域では、分子のレイ リー散乱が無視できる点に留意したい。

本稿では、MATRAS のうち MOLIERE に加え られた変更点に焦点を当てて説明することにす る。受信器シミュレータとインバージョンコード は変更がないため、本稿では取り上げない。これ らのモジュールについては、文献[15]を参照して いただきたい。また散乱モデルは、本号の別稿に て論じている[18]。

2では、MATRASの理解及び使用に必要な基礎的事項を簡単に紹介する。具体的には、吸収係数と放射伝達アルゴリズムについて説明する。3 では、放射伝達の新しい計算法について説明する。 光路に沿った透過率と放射輝度(ラディアンス)の 計算及び地球物理学的パラメータの荷重関数の計 算についても、幾つか取り上げる。MATRASの 検証と現在の応用については、4で論じる。最後 の5において、本モデルの今後の発展に言及し、 まとめとする。

2 MATRASの基礎

2.1 クリアスカイ放射伝達モジュール

MATRASのクリアスカイ放射伝達モジュール は、以下に示す積分形式の非散乱放射伝達方程式 を計算する[19]。

$$I_{\nu}(s_{r}) = I_{\nu}(s_{e}) e^{-\int_{s_{e}}^{s_{r}} \alpha_{\nu}(s) ds}$$
(1)

+
$$\int_{s_e}^{s_r} B_{\nu}(T) \alpha_{\nu}(s) e^{-\int_s^{s_r} \alpha_{\nu}(s') ds'} ds$$
 (2)
(Wm⁻²Hz⁻¹sr⁻¹).

この式は、ある決まった光路(*se*, *sr*)上の位置 *s* における、大気の放射と吸収の様子を示している。 *Iv*(*se*)は周波数 *v* で光路に入射する背景放射輝度 であり、*Iv*(*sr*)はサウンダによって観測される出 射放射輝度である。上式に使用される物理変数と 物理定数の定義を、表1に示す。背景放射は、 3Kの宇宙背景放射か地表面放射のいずれかであ る。雲又はエアロゾルが無視できる(波長と同程 度以上の粒径を持つ粒子が存在しない)と仮定す れば、散乱効果は無視できる。発生源関数が吸収 係数 *av* と等しくなるよう、上式では大気が局所 的な熱力学的平衡状態にあると仮定している。こ の前提条件は、サブミリ波より長波長域では上部 中間圏まで、また赤外領域では中部成層圏まで確 認されている。大気中を通過すると、視線は屈折 して地表方向に曲げられる。この効果については、 文献^[15]に記載・説明されている。吸収係数につ いては次節で取り上げる。

私たちは不透明度を $\tau_{\nu}(s,s_r) = \int_s^{s_r} \alpha_{\nu}(s) ds$ 、 透過率を $\eta_{s,s_r} = e^{-\tau_{\nu}(s,s_r)}$ と定義する。

光路が一定温度 T の媒体中を通過する特別な ケースにおいて、式2 は次のように簡単になる。

$$I_{\nu}(s_{r}) = I_{\nu}(s_{e}) \eta_{s_{e},s_{r}} + B_{\nu}(T)(1 - \eta_{s_{e},s_{r}})$$
(3)

背景放射 $Iv(s_e)$ は透過率 $\eta_{se, sr}$ と等しい比率で 吸収される一方、媒体からは放射輝度 Bv(T)(1 – $\eta_{se, sr}$) が放出される。出射放射は、 $Iv(s_e)$ と Bv(T)の範囲内となる。正味の収支は、 $Bv(T) < Iv(s_e)$ であれば放射吸収であり、逆であれば放出 である。

光学的に薄い媒体、すなわち $T_{s_e,s_r} \approx 0$ のとき、 背景放射の項は $Iv(s_e)(1 - \tau_{se,sr})$ 、また放出放射 輝度の項は Bv(T) $\tau_{se,sr}$ となる。不透明度が少しの 増加(光学的に薄い近似が成立する程度の小さい 増加)を示す場合、背景放射部分に対する影響は

表1 MA	TRAS	で使用され	.る物埋変数	と物埋足数の	の表記及び	♪足義
-------	------	-------	--------	--------	-------	-----

Notations	Definitions	Values	Units SI
c	speed of light	$2.9979 \ 10^8$	$\mathrm{m.s}^{-1}$
h	Planck constant	$6.6261 \ 10^{-34}$	J.s
k_b	Boltzmann constant	$1.3807 \ 10^{-23}$	$J.K^{-1}$
N	Avogadro number	$6.02 10^{23}$	mol^{-1}
R	Perfect gaz constant $(k_b \times N)$	8.314	$J.K^{-1}$
R_T	Earth radius	$6378 10^3$	m
B(T)	Planck function		$\mathrm{Wm^{-2}Hz^{-1}sr^{-1}}$
$\alpha_{\nu}(s)$	absorption coefficient at the frequency ν		m^{-1}
I_{ν}	radiance at the frequency ν		$W.m^{-2}.Hz^{-1}.sr^{-1}$

無視できるが、放出放射輝度は線形に増加する。

光学的に厚い媒体、すなわち $\tau_{s_e,s_r} \gg 0$ のとき、 透過率はゼロになり、出射放射は単純に B(T) に なる。不透明度が少し変化する程度では、出射放 射の値は変化しない。

両者の中間のケースでは、不透明度が少し増加 すると背景放射部分は減少し、放出放射部分は増 加する。出射放射は *B*(*T*)に近づき、差分 *I*₅*T* – *I*₅*E* が増加する。

2.2 吸収係数

2.2.1 ラインバイラインモデル

ラインバイラインモデルでは、光路に沿った吸 収係数 $\alpha_{\nu}(s)$ をスペクトル遷移と大気成分につい て積算する。 $\alpha_{\nu}(s)$ の計算式は下記のようになる。

$$\alpha(s,\nu) = \sum_p \sum_q \rho^p(s) \ I^q_{\nu_q}(T) \ \frac{\nu}{\nu_q} \ f^{p,q}(\nu,\nu_q) \quad (4)$$
$$(\mathbf{m}^{-1})$$

ここに、

$ \rho^{p}(s)$:分子 p の密度	(m^{-3})
v_q :遷移 q の周波数	(Hz)
Ivq: 遷移 q の線強度	$(Hz.m^2)$
F ^{p,q} :分子 p 及び	

遷移 q に対する線形状 (Hz⁻¹) である。

遷移周波数 v_q は圧力 Pによって若干シフトする。これは次式のように計算される。

$$u_q = \nu_q^0 + \delta_{\nu}^q P \left(\frac{T_0}{T}\right)^{0.25 + 1.5 n_a}$$

ここに、 ν_q^0 はシフトがゼロのときの遷移周波 数、 δ_{ν}^p は温度 T_0 における圧力周波数シフト係数、 n_a は温度依存係数である。

線強度は、ある分子がスペクトル遷移の上側の エネルギー準位から下側のエネルギー準位に遷移 する確率である。これは両準位のポピュレーショ ンの差に依存する。したがって大気が熱平衡状態 にあると仮定するならば、温度に依存することに なる。温度 Toにおける線強度が与えられたとき、 温度 T における値は次式で与えられる[20]。

$$I_{\nu_q}(T) = I_{\nu_q}(T_0) \frac{e^{-E_q/k_b T}}{e^{-E_q/k_b T_0}} \left(\frac{1 - e^{-h\nu_q/k_b T}}{1 - e^{-h\nu_q/k_b T_0}}\right)$$

$$\frac{Q^p(T_0)}{Q^p(T)} \quad (\text{Hz.m}^2)$$
(5)

ここに、*E*_qは遷移 q の 2 状態のうちの低いほ うのエネルギー、*Q*_pは大気成分 p の分配関数で ある。

線形状は、分子同士の衝突によるスペクトル線 の広がり、熱による無秩序な分子速度を原因とす る見かけ上のスペクトル線の広がり(すなわち ドップラー広がり[ドップラー効果によるスペク トル線の広がり])である。このドップラー広がり による線形状は、半値半幅(HWHM) Δva におけ るガウス関数 fa によって与えられる。

$$f_d(\nu,\nu_0) = \frac{1}{\Delta\nu_d} \left(\frac{\ln 2}{\pi}\right)^{\frac{1}{2}} e^{-\ln 2\left(\frac{\nu-\nu_q}{\Delta\nu_d}\right)^2}$$
(6)
(Hz⁻¹)

$$\Delta \nu_d = \frac{\nu_q}{c} \left(\frac{2RT\ln 2}{M}\right)^{\frac{1}{2}}$$
(Hz) (7)

ここに、Tは温度、Mは分子質量である。

衝突による線形状 f_c は、Van Vleck and Weisskopf (VVW) 分布によって与えられる[21]。

$$f_{c}(\nu,\nu_{0}) = \frac{1}{\pi} \frac{\nu}{\nu_{q}} \left(\frac{\Delta\nu_{c}}{\Delta\nu_{c}^{2} + (\nu - \nu_{q})^{2}} + \frac{\Delta\nu_{c}}{\Delta\nu_{c}^{2} + (\nu + \nu_{q})^{2}} \right)$$
(8)
(Hz⁻¹)

$$\Delta \nu_{c} = \gamma_{\text{air}} P (1 - \text{vmr}) \left(\frac{T_{0}}{T}\right)^{n_{a}} + \gamma_{\text{self}} P \text{vmr} \left(\frac{T_{0}}{T}\right)^{n_{s}}$$
(9)
(Hz)

ここに、 Δv_c は半値半幅、 $\gamma_{air} \geq \gamma_{self}$ はそれぞ れ温度 T_0 における空気広がり係数と自己広がり 係数、P 及び T は大気圧と大気温度、 n_a 及び n_s は空気広がり係数と自己広がり係数の温度依存性 である。

ドップラー線幅の高度依存性は、温度のみに よって決まる。そのためこの線幅の値は、全高度 において同じオーダーである。一方、衝突による 線幅は、圧力に比例し高度とともに指数関数的に 減少する。線幅は、低高度では衝突の効果が卓越 し、高高度ではドップラー広がりが卓越する。中 間域では両者の効果が共存し、その線形状は次式

表2	MOLIERE のス^	ペクトル線カタロ	グに含まれる主要パラ	ラメータの定義
----	-------------	----------	------------	---------

Notations	Definitions	Position (format ¹)
SPEISO	molecular tag^2	1-3 (i3)
FRE	Frequency of the transition [MHz]	4-16 (f13.4)
FSH	Frequency shift parameter at 296 K [Torr/hpa]	24-32 (f8.3)
STG	$Log10$ of the line strength at 300 K $[MHz/nm^2]$	33-40 (f8.4)
ELO	Energy of the lowest transition level $[cm^{-1}]$	41-50 (f10.4)
AGA	air-collisional broadening parameter [Torr/hPa]	51-55 (f5.2)
SGA	self-collosional broadening parameter [Torr/hPa]	56-60 (f5.2)
N	air broadening temperature dependence parameter [-]	61-64 (f4.2)
NS	self broadening temperature dependence parameter [-]	65-68 (f4.2)

1 FORTRAN 言語でのフォーマット定義 2 HITRAN のタグ付を踏襲 (例:H¹⁸O は12)

表3 HITRAN パラメータから MATRAS パラメータへの変換

Parameter	HITRAN unit	conversion formula	
FRE	cm^{-1}	HITRAN_VALUE $\times c \times 10^{-4}$	
FSH	cm^{-1}/atm^{-1} at 296 K	HITRAN_VALUE $\times c \times 10^{-4}/760$.	
STG	${\rm cm}^{-1}/{\rm cm}^2$ at 296 K [*]	$\log_{10}(\text{HITRAN_VALUE} \times c \times 10^{12}/\text{r}_{\text{iso}})$	
AGA	$\mathrm{cm}^{-1}/\mathrm{atm}^{-1}$	HITRAN_VALUE $\times c \times 10^{-4}/760$.	
* 線強度は 300 K として計算する(式 5)。			

に示す Voigt 分布となる。

$$f_{\nu}(\nu,\nu_{q}) = \int_{-\infty}^{\infty} f_{d}(\nu,\nu_{q}) f_{c}(\nu-\nu',\nu_{q}) d\nu' (10)$$
(Hz⁻¹).

たたみ込みの計算アルゴリズムは幾つか存在す るが、MATRAS では Kuntz^[22]のものを使用し ている。

2.2.2 連続吸収帯

ラインバイライン計算法だけでは、吸収係数の 観測値と一致させることができない。一つめの理 由は、VVW の線形状がスペクトル線分布の遠い 裾を正確に表さないことである。対流圏では H₂O の(及びそれより程度は劣るが CO₂の)遠い裾が、 吸収係数の計算値に大きな誤差を生じさせる。

二つめの理由は、大気分子(N₂、O₂、H₂O、CO₂) の衝突による非共鳴性の吸収によって、連続吸収 帯が発生することである。これは下部及び中部対 流圏において重要である。衝突による連続吸収帯 の理論的定式化は、モデル化可能である^{[23]-[25]}。

MATRAS では線形状の遠い裾をゼロとおい て、O₂、N₂、CO₂、及び H₂O の連続吸収帯を扱う ために MT_CKD モデル[26]を使用している。こ のモデルは全赤外領域をカバーする。MOLIERE に使用されたこれ以外の連続吸収帯モデルも備 わってはいる^{[27][28]}。しかし、これらのモデルを 使えるのは、1 THz までである。惑星大気の研究 では、文献^[25]の CO₂ – CO₂連続吸収帯モデルが 使用されている。

2.3 分光学データベース

MATRAS は、MOLIERE と同じカタログから 分光パラメータを読み出している。該当する フィールドを表2にまとめる。スペクトル線ファ イルの作成には、HITRAN という分光学データ ベース^[29]が用いられる。カタログ間の変換則を 表3に示す。

3 放射伝達方程式の計算と荷重関数 の導出

3.1 透過率と出射放射輝度

大気を幾つかの温度一定の層に分割することに よって、放射伝達方程式(式 2)を離散化する。各 層の厚さは、各層の光路長が等しくなるように定 義する。層 *i* から層 *j* (ただし層 *j* は含まない)ま

「特集 テラヘルツ技術特集

での離散化透過率を、 $\eta [i:j]$ と表記する。最初 と最後の層の番号は、それぞれ[0]と[n]である。 受信器は[n+1]の番号で表す。このとき放射伝達 方程式は次のようになる (周波数の変数は省略し た)。

$$I[n+1] = I[0] \times \eta [1:n+1]$$
(11)

+
$$\sum_{i=1}^{n-1} \{B[i] \times (\eta[i+1:n+1] - \eta[i:n+1])\}$$
 (12)

+
$$B[n] \times (1 - \eta[n:n+1]),$$
 (13)

ただし、 $\eta[i:j] = \prod_{k=1}^{i-1} \eta[k]$ である。層iに よって放射され、受信器に到達する放射輝度は次 式となる。

$$I[i] = B_i \ (1 - \eta[i:i+1]) \ \eta[i+1:n+1]. \ (14)$$

式 14 において $Bi(1 - \eta [i:i+1])$ の部分は 層 *i* によって放射される放射輝度(式 3)、また $\eta [i+1:n+1]$ は層 *i* から受信器までの透過率 (すなわち吸収のレベル)である。

前節で既に指摘したように、光学的に厚い大気

では η [1:n+1] ≈ 0 かつ $\sum_{i=\eta}^{n}$ [i+1:n+1] - η [i:n+1]=1- η [i:n+1] ≈ 1となり、出射 放射輝度 I[n+1] は各層 i のプランク放射輝度 Bi の加重平均となる。放射輝度が輝度温度で表現さ れるとき、出射放射輝度は寄与の大きい層の平均 温度となる(図 1 参照)。寄与の分布は、高度に伴 う不透明度の変化に依存する。

3.2 VMR 荷重関数

離散化した放射伝達方程式を、ある大気成分の 層 *l* における体積混合比 (VMR) × [*l*] で微分する と、次式を得る。

$$\begin{split} K[l] &= \frac{\partial I[n+1]}{\partial x[l]} \\ &= -\bar{\alpha}[l] \times \Delta[l] \times (\\ &+ I[0] \times \eta \, [1:n+1] \\ &+ \sum_{i=1}^{l-1} B[i] \times (\eta[i+1:n+1] - \eta[i:n+1]) \\ &+ -B[l] \times \eta[l:n+1] \end{split}$$

上の式を導くにあたって以下を使用した。

$$\frac{\partial \eta[j:n+1]}{\partial x[l]} = \begin{cases} -\bar{\alpha}[l] \times \Delta[l] \eta[j:n+1], \ l \in [j, \ n] \text{ obs} \\ 0, \qquad l \neq [j, \ n] \text{ obs} \end{cases}$$

及び

$$ar{lpha}[l] \;=\; rac{\partial lpha[l]}{\partial x[l]} \;=\;
ho[l]\; k[l],$$

ここに、ρ[*l*] は密度、*k*[*l*] は吸収断面積である。 式 13 との共通項に着目すると、放射輝度の計 算と合わせて計算することで、荷重関数を高速に 計算するアルゴリズムを実現できる。

3.3 温度荷重関数

VMR 荷重関数と同様、離散化形式の放射伝達 方程式を層 l の温度で微分することができる。

$$\begin{split} K^{T}[l] &= \frac{\partial I[n+1]}{\partial T[l]} \\ &= -\frac{\partial \alpha[l]}{\partial T[l]} \times \Delta[l] \times (\\ &+ I[0] \times \eta \left[1:n+1\right] \\ &+ \sum_{i=1}^{l-1} B[i] \times (\eta[i+1:n+1] - \eta[i:n+1]) \\ &+ -B_{f}[l] \times \eta_{f}[l:n+1] \\ &+ \frac{\partial B_{f}[l]}{\partial T[l]} \times (\eta[i+1:n+1] - \eta[i:n+1]) \end{split}$$

 $\frac{\partial \alpha[l]}{\partial T[l]}$ の項は摂動法によって計算する。

3.4 発生源関数の荷重関数

式 13 においてプランク関数 *B*[*i*]を発生源関数 に置き換えると次式になる。

$$S[i] = \beta[i] \times B[i] + \epsilon[i].$$

式 13 を β[i] で微分すると、

$$\begin{split} K^s[l] &= & \frac{\partial I[n+1]}{\partial \beta[l]} \\ &= & B[l] \times \left(\eta[l+1:n+1] - \eta[l:n+1] \right). \end{split}$$

になる。

K[◦][*l*] が *I*[*l*] (式 14) であるというのは興味深い。 これは出射放射輝度 *I*[*n*+1] に対する層 *l* の寄与 である。

式 13 を *ɛ*[*l*] で微分すると次式を得る。

$$K^{e}[l] = \eta[l+1:n+1] - \eta[l:n+1]$$

4 モデルの検証と現在の応用分野

モデルの検証は2段階で行う。第1段階では コードを他のアルゴリズムと比較し、実現の正し さと数値の正確さを確認する。このとき吸収係数 と放射伝達の計算に対して、特に注意が払われる。 MOLIERE コードはミリ波及びサブミリ波の領域 において、既に幾つかのモデルと比較されてい る[30]。改良版 MATRAS については、変更を実 施するたびに、可能な限り MOLIERE と比較し てきた。特に、直上、直下及びリム方向の観測に おいて、新しい放射伝達の計算値と MOLIERE との違いが1%未満であることをチェックした。

第2段階では実測値を用いてモデルの検証を行 い、アルゴリズムの仮定が正しいかどうかを チェックする。

次節では、MATRAS によるラインバイライン 計算と MIRART コードとの結果比較について簡 単に紹介する^[31]。比較にあたっては、MATRAS の吸収係数を用いて LIDAR の観測値から CO₂ 濃 度を推定するという方法を取った。LIDAR シス テムによる濃度測定値は、現場での測定値と一致 している。

さらに、Far-InfraRed Spectroscopy of the Troposphere (FIRST)の気球観測値から地球物理 学的パラメータを推定するための解析について取 り上げる。これは、テラヘルツ帯を含む全赤外領 域 (2000 cm⁻¹まで)で大気の出射放射スペクトル について初めて得た観測値である[13]。

現在このコードは、本稿で論じなかった研究に も使用されている。Odin 衛星に搭載された、サ ブミリ波放射計 (SMR)の観測値を基にした成層 圏及び中間圏の HO2 濃度の推定[9][32]並びに 2009 年の打ち上げが予定される、国際宇宙ステー ションの日本実験棟「きぼう」(JEM)に搭載予定 の、超伝導サブミリ波リム放射サウンダ(SMILES) の処理チェーンに関する改良研究[33] がなされて いることをここで紹介しておく。MATRAS は金 星大気の研究にも使用されている。

4.1 CO2断面積に関するMIRARTモデルと の比較

1013.25、50 及び 10⁻⁴ hPa という 3 種類の圧力 値について MATRAS と MIRART による CO₂

断面積の計算結果を比較した。スペクトル線が広 がる要因は、1013.25 hPa のときが衝突、10⁻⁴ hPa がドップラー広がり、そして 50 hPa ではその両 方であると考えられる。違いの原因には、モデル そのもののほか、Voigt アルゴリズム、分配関数 及び同位体比がある。今回の MIRART の計算で は、自己衝突による広がり効果を盛り込んでいな いが、結果に与える影響が無視できることを、私 たちは MATRAS を用いて確認している。比較作 業では、HITRAN カタログから得られる 3171.55 cm⁻¹のスペクトル線 1 本のみを使用す る。MIRART コードがこのカタログを直接使用 するのに対し、MATRAS では HITRAN のパラ メータを、MATRAS のスペクトル線ファイル フォーマット及び単位に変換しなければならな い。両コードの比較作業では、HITRANを MATRAS のスペクトル線ファイルに変換する手 続きの検証も行う。

1013.25と 50 hPa の圧力では良好な一致が得ら れ、両モデルの差は 0.5 %より小さかった。 10⁻⁴ hPa の圧力では、0.01cm⁻¹ 以内において線形 状はドップラーによるガウス関数であるが、この 領域において、両モデルは非常によく一致した (0.5 %未満)。この領域の外側での線形状は、衝 突型の線形状に従う。二つの領域の移行区間にお いて MIRART は左右対称の二つの極大を示した が、それは MATRAS では見られなかった。しか し断面積の値は極めて小さく、この効果は無視で きる。

以上より、MATRAS のラインバイラインのア ルゴリズムと MIRART は、比較作業において良 好な一致を示すと結論できる。

4.2 FIRST による気球観測

FIRST の測定器はマイケルソン干渉計であり、 10 及び 100 ~ 1000cm⁻¹のスペクトル領域を 0.625 cm⁻¹の分解能で測定することができる (ア ポダイゼーションは行わない)。測定器は高高度 の気球に搭載され、ナディア方向の地球出射であ る長波放射を、ほぼすべての赤外域において初め て観測した。上部対流圏の湿度を宇宙から推定す るにあたり、この測定器の使用によって中赤外域 にテラヘルツ帯を加えるメリットを、MATRAS を用いて実証したい。

特 集

FIRST の測定器の観測をシミュレートするた めに、MATRAS の設定を行った。測定によって 得られる、理論上かつアポダイゼーションなしの 線形状 (式 15)を使用し、これを 12 cm⁻¹のスペク トル範囲にわたって 0.1 cm⁻¹の分解能でモデル化 した。

$$f(\nu) = \frac{\sin(\pi\nu/d\nu)}{(\pi\nu/d\nu)},\tag{15}$$

ここに、 $dv = 0.625 \, \text{cm}^{-1}$ である。

FIRST のスペクトルと MATRAS のシミュ レーションの比較を、図4に示す。対流圏メタン (CH4)のリトリーバルの検討も、並行して実施し た。図5は選択した周波数範囲における FIRST のスペクトルである。CH4のスペクトル線がある ときとないときの、2種類の MATRAS 計算につ いても示してある。

大気が気候値に近い状態になることもあると考 えると、FIRST の観測値と MATRAS による全 波長域のシミュレーションは良好な一致を示すと 考えられる。CH4のスペクトル線がないときのシ ミュレーション結果から、CH4のスペクトル線が 判別できる。これは CH4のリトリーバルに用いる ことができる。それ以外のスペクトル線は、H2O と N2O のものである。

5 まとめ

本稿では、テラヘルツ放射の解析と、シミュ レーションを行う MATRAS モデルについて論じ た。このモデルは、既に幾つかの研究に使用でき るレベルに達している。しかし、更なる改良が必 要である。

今後は、現在開発中の散乱モジュールを完全統 合する予定である。光路に沿った水平方向の大気 不均質を扱う機能についても盛り込んでいく。線 形状の遠い裾は、VVW 分布と異なる分布型を用 いることによって改善する必要がある。15 μm の 窓において近接する CO2のスペクトル線同士が干 渉する現象 (ラインミキシング)を、考慮に入れる ことが必要である。これと並行して、本稿で論じ た方法に従って、諸アルゴリズムを十分に検証す る必要がある。

謝辞

Marty Mlynczak 博士と David Johnson 博士 (NASA ラングレー研究所)には FIRST のデータ を提供していただいた。ここに感謝の意を申し述 べたい。

参考文献

- 1 J. E. Harries, J. E. Russell, and co authors, "The Geostationary Earth Radiation Budget (GERB) experiment", Bull. Amer. Met. Soc., 86:945-960, 2005.
- 2 SPARC. Assessment of upper tropospheric and lower stratospheric water vapour, 2000.
- **3** H. K. Roscoe, "A review of stratospheric H₂O and NO₂", Advances in Space Research, 34(8):1747-1754, 2004.
- 4 IPCC. Climate change 2001: The scientic basis, 2001.
- 5 M. O. Andreae, Artaxo P., Fischer H., Freitas S. R., Grégoire J.-M., Hansel A., Hoor P., Kormann R., Krejci R., Lange L., Lelieveld J., Lindinger W., Longo K., Peters W., de Reus M., Scheeren B., Silva Dias M. A. F., Ström J., van Velthoven P. F. J., and Williams J., "Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region", Geophys. Res. Lett., 28:951-954, Mar. 2001.
- **6** B. N. Duncan, S. E. Strahan, Y. Yoshida, S. D. Steenrod, and N. Livesey, "Model study of the cross-tropopause transport of biomass burning pollution", Atmos. Chem. Phys., 7:3713-3736, 2007.
- 7 A. Stohl, Forster C., Eckhardt S., Spichtinger N., Huntrieser H., J. Heland, Schlager H., Wilhelm S., Arnold F., and Cooper4 O, "A backward modeling study of intercontinental pollution transport using aircraft measurements", J. Geophys. Res., 108(D12), 2003.
- **8** P. W. Rosenkranz, "Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements", 39:2429-2435, 2001.
- D. P. Murtagh, U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P. Eriksson, C. Jiménez, G. Mégie, J. de La Noë, P. Ricaud, P. Baron, J. R. Pardo, A. Hauchecorne, E. J. Llewellyn, D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, W. F. J. Evans, I. C. McDade,, C. S. Haley, C. Sioris, C. von Savigny, B. H. Solheim, J. C. McConnell, K. Strong, E. H. Richardson, G. W. Leppelmeier, E. Kyrölä, H. Auvinen, and L. Oikarinen, "An overview of the Odin atmospheric mission", Can. J. Phys., 80(4): 309-318, 2002.

- J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, D. A. Flower, J. R. Holden, G. K. Lau, N. J. Livesey, G. L. Manney, H. C. Pumphrey, M. L. Santee, D. L. Wu, D. T. Cuddy, R. R. Lay, M. S. Loo, V. S. Perun, M. J. Schwartz, P. C. Stek, R. P. Thurstans, M. A. Boyles, S. Chandra, M. C. Chavez, G-S. Chen, B. V. Chudasama, R. Dodge, R. A. Fuller, M. A. Girard, J. H. Jiang, Y. Jiang, B. W. Knosp, R. C. LaBelle, K. A. Lee, D. Miller, J. E. Oswald, N. C. Patel, D. M. Pukala, O. Quintero, D. M. Scaff, W. V. Snyder, M. C. Tope, P. A. Wagner, and M. J. Walc.
- A. Chedin, M. T. Chahine, and N. A. Scott, editors, "High Spectral Resolution Infrared Remote Sensing for the Earth's Weather and Climate Studies", NATO ASI Series, Vol.19, Springer, 1993.
- 12 H. Fischer and H. Oelhaf, "Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb-emission spectrometers", 35:2787-2796, 1996.
- 13 Mlynczak M. G., Johnson D. G., Latvakosky H., Watson M., Kratz D. P., Traub W. A., Bingham G. E., Wellard S. J., Hyde C. R., and X. Liu, "First light from the far-infrared spectroscopy of the troposphere (first) instrument", GEOPHYSICAL RESEARCH LETTERS, 33:L07704, 2006.
- I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, "At the dawn of a new era in terahertz technology", Vol.95 (8), pp.1611-1623, 2007.
- 15 J. Urban, P. Baron, N. Lautié, N. Schneider, K. Dassas, P. Ricaud, and J. De La Noë, "Moliere (v 5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range", JQSRT, 83:529-554, 2004.
- 16 P. Baron, «Developpement et validation du code MOLIERE: Chaîne de traitement des mesures microondes du satellite Odin», PhD thesis, Université Bordeaux I, Jun. 1999.
- 17 P. Ricaud, P. Baron, and J. de La Noë, "Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the ndsc radiometer at the plateau de bure", Annales Geophysicae, 22:1903-1915, 2004.
- 18 J. Mendrok et al., "7-5 The MATRAS Scattering Module", This Special Issue of NICT Journal.
- 19 Chandrasekhar S. Radiative Transfer. Dover Publications, Inc., New-York, 1960.
- 20 R. L. Poynter and H. Pickett, "Submillimeter, millimeter, and microwave spectral line catalog", Applied Optics, 23:2235-2240, 1985.
- 21 J. H. Van Vleck and V. F. Weisskopf, "On the shape pf collision-broadened lines", Review of modern physics, 17(2 and 3):227-236, 1945.
- 22 M. Kuntz. "A new implementation of the humlicek algorithm for the calculation of the voigt profile function", J. Quant. Spectrosc. Radiat. Transfer, 57(6), 1997.
- 23 A. Borysow and L. Frommhold, "collision induced rototranslational absorption spectra of n2-n2 pairs for temperatures from 50 to 300k", Astrophysical Journal, 311, 1986. http://www.astro.ku.dk/ aborysow/programs/index.html.
- **24** J. Boissoles, C. Boulet, R. H. Tipping, A. Brown, and Q. Ma, "Theoretical calculation of the translationrotation collision-induced absorption in n2-n2, o2-o2, and n2-o2 pairs", J. Quant. Spectrosc. Radiat. Transfer, 82:505-516, 2003.
- **25** M. Gruszka and A. Borysow, "Roto-translational collision-induced absorption of CO² for the atmosphere of Venus at frequencies from 0 to 250 cm⁻¹ and at temperature from 200K to 800K", Icarus, 129:172-177, 1997.
- **26** E. J. Mlawer, S. C. Clough, and D. C. Tobin, "Mt-ckd model", version 1.2, from http://www.rtweb.aer.com/main.html. 2004.

- 27 Liebe HJ, "Propagation modeling of moist air and suspended. water/ice particles at frequencies below.1000 GHz", In Proceedings of the AGARD 52nd specialists meeting electromagnetic propagation panel.
- **28** Pardo J. R., Serabyn E., Wiedner M. C., and Cernicharo J, "Measured telluric continuum-like opacity beyond 1 THz", J. Quant. Spectrosc. Radiat. Transfer, 2005.
- 29 L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, Jr. C. Chackerian, K. Chance, L. Coudert, V. Dana, V. M. Devi J. M. Flaud R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The hitran 2004 molecular spectroscopic database", JQSRT, 96:1747-1754, 2005.
- 30 C. Melsheimer, C. Verdes, S. Bühler, C. Emde, P. Eriksson, S. Ichizawa, V. O. John, Y. Kasai, G. Kopp, N. Koulev, T. Kuhn, O. Lemke, S. Ochiai, F. Schreier, T. R. Sreerekha, C. Takahashi, S. Tsujimaru, and J. Urban, "Intercomparison of general purpose clear-sky atmospheric radiative transfer models for the millimeter and sub-millimeter spectral range", Radio Science, 40:RS1007, 2005.
- **31** F. Schreier and U. Böttger, "MIRART, a line-by-line code for infrared atmospheric radiation computations incl. derivatives", Atmos. & Oceanic Optics, 16:262-268, 2003.
- **32** P. Baron, Y. Kasai, D. P. Murtagh, J. Urban, P. Erickson, and M. Olberg, "HO₂ measurement in the stratosphere and the mesosphere from the sub-millimeter limb sounder Odin/SMR", Advances in Geosciences 2006 (Atmospheric Science), 06, 2007.
- 33 Shiotani M., Masuko H., and the SMILES Science Team and the SMILES Mission Team. JEM/SMILES mission plan. NASDA Rep. Version 2.1, NAtional Space Development Agency (NASDA), Communications Research Laboratory (CRL), Koganei, Tokyo, 184-8795, Japan, Nov.15 2002. http://smiles.tksc.nasda.go.jp/indexe.shtml.

Philippe Baron

電磁波計測研究センター環境情報セン シング・ネットワークグループ特別研 究員 Ph.D. 大気リモートセンシングのためのフォ ワード・リトリーバルモデルの開発

笠井康子

電磁波計測研究センター環境情報セン シング・ネットワークグループ主任研 究員 博士(理学) 大気分光リモートセンシング

瀬田孝将

新世代ネットワーク研究センター光波 量子・ミリ波 ICT グループ専攻研究員 工学博士 物理化学、分光学、化学反応論、大気 化学

鈴木広大

東京学芸大学教育学部自然環境科学科 学生 地球惑星科学

Jana Mendrok 電磁波計測研究センター環境情報セン シング・ネットワークグループ専攻研 究員 Ph.D.

放射伝達モデルと雲のリモートセンシ ング

整
 整
 電磁波計測研究センター環境情報セン
 シング・ネットワークグループ主任研
 究員
 マイクロ波リモートセンシング

箱 右俊 茨城大学理学部地球生命環境科学科学 生

地球惑星科学

佐川英夫 ドイツ・マックスプランク研究所 博士(理学)

惑星大気のリモートセンシング

Joachim Urban チャルマス工科大学 地球惑星科学

