7-7 テラヘルツ波による惑星観測:野辺山ミリ波 干渉計を利用した金星大気観測

7-7 Terahertz Remote-sensing of the Venusian Atmosphere: Observations using the Nobeyama Millimeter Array

佐川英夫 SAGAWA Hideo

要旨

テラヘルツ波で金星を観測すると、金星大気から射出された熱放射(連続波)及び様々な微量成分の 回転遷移スペクトルが得られる。電波からテラヘルツ波にかけては CO₂大気が光学的に薄いため、可 視領域では観測不可能な金星の雲頂(高度 70 km)より下から射出される熱放射が観測される。微量成 分の吸収線からは、雲頂から中間圏(高度 100 km)にかけての微量成分混合比がリトリーバルされるこ とに加えて、ドップラーシフトを利用して、それらの高度での風速を測ることができる。2004-2006 年 に野辺山ミリ波干渉計で取得した 0.1 THz 帯での連続波画像では、金星ディスク内部で輝度温度 300-380 K の明暗構造が確認された。0.1 THz での輝度温度の変動には、高度 50 km 付近の気温の非 一様性や、吸収物質である SO₂、H₂SO₄ の偏在が反映される。しかし、今回観測された 300-380 K という非一様性は、これまでに知られている気温や吸収物質の変動幅では説明できなかった。また、 同時に観測した ¹²CO(J=1-0)の吸収線からは、高度 100 km 付近での大気循環は昼夜間循環が卓越し ており、風速は 150 m/s 以上に達することが示された。

Venusian spectra at the terahertz region are characteristic of several rotational absorption lines of minor constituents superposed on a continuum of the atmospheric thermal emission. The intensity of the continuum emission varies from 700 to 200 K with increasing the observing frequency from radio to terahertz region, which enables us to observe the Venusian atmosphere in a wide vertical range: from the surface to the cloud top. The rotational lines provide us effective tools not just to retrieve the vertical and horizontal distribution of minor constituents but also to measure the wind velocity via Doppler-shift of the line center frequency. In this paper, the results of the aperture synthesis observations of Venus with the Nobeyama Millimeter Array are presented.

[キーワード] テラヘルツ波, 金星大気, リモートセンシング, 電波干渉計, 開口合成 Terahertz radiation, Venus, Remote sensing, Interferometer, Aperture synthesis

1 はじめに

金星は地表面で 90 気圧にも達する CO₂ 大気を 持ち、高度 50 km 付近には厚さ数 km にも及ぶ 硫酸液滴の雲が全球を覆っている。大量の CO₂ ガ スは温室効果を引き起こし、地表での気温を 700 K 以上に至らしめている。これらの特異な大 気構造に加えて、金星の下層大気(地表から高度 70 km 付近) は、惑星自転速度の 60 倍にも達する 高速で定常的な西向き循環 (スーパーローテー ション)を形成していることが知られている。地 球のすぐ隣にあり、しかも固体惑星の大きさが非 常に近いにもかかわらず、その表層環境は何故こ こまで大きく掛け離れたのか?この問いに答える 鍵は、現在の金星気候システムを解明することに あると考えられる。 テラヘルツ波リモートセンシング / テラヘルツ波による惑星観測:野辺山ミリ波干渉計を利用した金星大気観測

NiCT 129

金星の気候システムを観測的に研究するために は、大気組成や大気循環の3次元的把握が不可欠 である。それには、分厚い大気を様々な高度まで 見通す観測が重要となる。しかし、可視光を利用 した観測では、光学的に厚い大気と雲層に遮られ、 雲頂(高度70km)よりも下方の様子を探ることは 不可能である。1980年代に入り、CO₂大気が光学 的に薄くなり、金星夜面において雲層より下の大 気を見通せる"大気の窓"が一部の近赤外領域で発 見された^[1]。しかし、この窓を利用しても、下層 大気中の限られた高度の情報しか得られず、また、 夜面しか観測できないというジレンマがある。

この状況にブレイクスルーをもたらすのが、テ ラヘルツ波を利用したリモートセンシングであ る。テラヘルツ波のうち、周波数 0.1 THz といっ た低周波数帯では、金星大気の透過率が可視光領 域よりも高く、雲層による散乱・吸収効果は可視 光領域と比較して小さい。さらに、テラヘルツ波 では、太陽光は金星大気の熱放射と比較して無視 できる。そのため、テラヘルツ波を利用すること で、これまで観測されていなかった雲の下の様子 を昼夜両面で知ることが可能になる。テラヘルツ 波のもう一つの特徴としては、金星の中間圏(高 度 70-100 km)に存在する微量成分(COや H2O 等) の回転遷移線が観測される点を指摘できる。テラ ヘルツ波観測で実現される高分散分光観測は、こ れら微量成分の鉛直分布のリトリーバルを可能に するだけではなく、吸収線の中心周波数が金星の 大気循環によってドップラーシフトしている様子 さえも観測可能にしている。

本文は、野辺山ミリ波干渉計を利用した 0.1 THz 帯での金星観測の結果を中心に、テラヘルツ波で 開かれる金星大気のリモートセンシングについて 述べるものである。まず、2 で電波干渉計を利用 した金星観測に関して簡潔に言及する。その後、 3 以降で、金星大気からの熱放射 (連続波)を対象 した高度 50 km 付近の観測と、分子吸収線を対象 した高度 100 km 付近の観測について記述する。

2 干渉計を利用した開口合成観測

電波干渉計とは、複数の電波望遠鏡(アンテナ 素子と呼ばれる)を離れた場所に設置し、各素子 で受信される信号の相関を取ったのちに結合させ

ることで、あたかも一つの大口径望遠鏡で観測さ れたような画像を合成(開口合成)する観測装置で ある。電波望遠鏡が分解可能な離角の小ささには 理論的限界値(回折限界)があり、それは望遠鏡の 主鏡 (アンテナのパラボラ)の大きさ及び観測波長 の短さに比例する。最近の地上望遠鏡を利用した 光学観測では1"以下の空間分解能が一般的と なっているが、同等の空間分解能をテラヘルツ波 (0.1 THz)の観測で実現しようとすると、口径 750mにも及ぶ非現実的な巨大パラボラが必要と なる。この問題を解決するために考えられたのが 電波干渉計を利用した開口合成観測である。野辺 山ミリ波干渉計では、6 基の口径 10 m のアンテ ナ素子を最大 350 m 離して設置することができ、 0.1 THz の観測では最高空間分解能~2" を実現し ている。これは、欧米の Plateau de Bure 干渉計 や CARMA 干渉計と比較しても、世界最高レベ ルの観測性能である。

本章では、データ解析の詳細を記述するのでは なく、干渉計を惑星観測に利用する際の留意点に ついて言及したい。なお、各アンテナ素子で取得 された信号が干渉計の出力となるまでの信号処理 や、観測データから電波画像を合成する解析方法 に関しては、Thompson らの参考文献^[2]が詳しい。

2.1 輝度分布一様成分の resolve out

高空間分解能を誇る電波干渉計ではあるが、その弱点の一つに、空間的に一様に広がった構造を 持つ電波源に対しては感度がないことが挙げられ る。干渉計で得られるデータ o(u, v)(ビジビリ ティと呼ばれる)は、観測対象の輝度分布 I(x, y) をフーリエ変換したものに相当する。

$$o(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x,y) e^{2\pi i (ux+vy)} dx dy \qquad (1)$$

式(1)ではアンテナの感度特性は無視している。 (u, v)は、実空間座標(x, y)の空間周波数成分であ り、観測における素子間の距離と観測周波数に よって決定される。素子間の距離には物理的な制 約(アンテナロ径よりも近い距離には設置できな い)があるために(u, v) = 0 付近の小さな空間周波 数成分は観測できない。言い換えれば、干渉計で は、特定の空間スケールよりも広がった構造を持 つ輝度成分は観測されないのである。 Resolve out と呼ばれるこの問題は、惑星のよ うに広がった構造を持つ観測対象では極めて深刻 となる。図1は、視直径10-40"のディスク内に 一様な輝度を持つ電波源を、野辺山ミリ波干渉計 のC配列(素子間の距離が26-164 mの配列)で 観測した際に得られる初期合成画像をシミュレー ションしたものである。視直径が20"を超えると、 ディスク構造が再現されず(二つに分離する)、観 測されるフラックス強度も減少することが分か る。

この問題は、欠損している部分のビジビリティ を何かしらのモデルで仮定することで解決され る。惑星の輝度分布は第一次近似的には一様な周 縁減光効果を伴ったディスク構造をしていると仮

定できる^[3]。この仮定の下、観測ビジビリティに 合うようなディスク状輝度分布のモデルビジビリ ティを求めてやることで、(*u*, *v*) =0 のフラックス 強度が得られる(図 2)。

2.2 サイドローブパターンの除去

干渉計で観測したビジビリティから電波画像を 合成する原理は、式(1)の逆フーリエ変換で与え られる。しかし、実際の観測では、離散的かつ有 限の空間周波数サンプリングとなる点を考慮する 必要がある。0と1の値を持つサンプリング関数 $s(\mu, \nu)$ を導入すると、実際の観測ビジビリティは、 $o_{obs}(u, v) = s(u, v)o(u, v)$ と表現される。これを逆 フーリエ変換した場合には、実際の電波源構造 I(x, y)にサンプリング関数の逆フーリエ変換関数 S(x, y)が畳み込まれる。S(x, y)は合成ビームと呼 ばれ、(x, v)=0 付近に存在する主ビームの外側に、 正負に波打つサイドローブパターンを持ってい る。このサイドローブパターンの影響で、図1の 初期合成画像では、モデルで与えたディスク電波 源の外側にも電波源(正負の値を持つ)が在るかの ような画像となっている。この初期合成画像から 合成ビームのサイドローブパターンの影響を取り 除いた後に初めて有意な画像が得られる。

点状電波源に対しては、複数のサイドローブ除 去手法が確立されている^[4]。しかし、それらの点 状電波源用の手法を惑星のように広がった面光源 に機械的に適用することは危険である。なぜなら、 面光源では、サイドローブパターンによる偽の信 号が面光源内部に重なってしまい、真の輝度分布 の微細な振幅が埋もれていることがあるためであ る。例えば図3左端の画像は金星の初期合成画像 であるが、この画像では輝度の微細構造は識別で

図3 サイドローブ除去の様子 詳細は本文を参照のこと。黒円は金星ディスクが在る べき位置を示す。また、本文中では触れていないが、 本研究では self-cal と呼ばれる位相補正操作[6] を適 用することで金星ディスク外部のノイズパターンを低 く押さえている。

きない。これを解決するために、面光源用のサイ ドローブ除去作業を行う必要がある「5」。まず、広 がった一様輝度成分をビジビリティからあらかじ め差し引いておき、その残差から合成される初期 画像(図3中央)を微小な点状電波源の集まりと考 える。残差画像に、点光源用のサイドローブ除去 操作を繰り返し適用していき、最後に事前に差し 引いた一様輝度分布を足し戻せば、**2.1** で記述し た resolve out の成分も併せて補正した金星の画 像となる(図3右端)。

2.3 より高い周波数での観測に向けて

観測ビジビリティの空間周波数は、素子間距 離と観測周波数に比例する。同じアンテナ配列 で 0.1 THz と 0.5 THz の観測を行った場合、 0.5 THz で観測した方が、より高い空間周波数の ビジビリティが得られることになり、より高い空 間分解能で画像を合成することができる。一方で、 0.5 THz の観測では、得られる最低空間周波数が 0.1 THz の観測よりも大きくなり、resolve out す るフラックスも大きくなる。図2の観測ビジビリ ティの強度分布からも分かるように、ビジビリ ティの第一ヌル (β~0.6)よりも大きな空間周波 数では、惑星のフラックス強度は急激に減少する。 空間周波数が高くなるにつれて地球大気の揺らぎ によるノイズが著しく増加するため、第一ヌルよ りも低い空間周波数成分が無い観測値に、周縁減 光ディスクのモデルビジビリティを精度良く フィッティングすることは難しい。このような場 合には、単一鏡の電波望遠鏡を利用して(u, v)=0 のフラックス強度そのものを追加観測する必要が ある。

高い観測周波数では干渉計の視野の狭さも問題 になる。干渉計の視野は各素子のアンテナ感度特 性の半値幅で決定される。野辺山ミリ波干渉計の 10 m アンテナでは 0.1 THz で約 65" である。ア ンテナの口径を一定とすると、観測周波数が高く なるにつれ視野は小さくなる。仮に口径 10 m の アンテナで構成される干渉計で 0.5 THz の観測を 想定した場合、視野は 15" にまで狭くなり、外合 付近の視直径の小さな金星でしか全体像を観測で きなくなる。この場合は、単一鏡で内合付近の金 星をマッピングする方が、実効的な空間分解能は 大きくなる。

3 雲の下を探る: 連続波を利用した観測

3.1 テラヘルツ波連続波観測の意義

テラヘルツ波における金星大気の光学的な厚み は、主に、大気主成分である CO2のコンティナム 吸収によって決定される。これは、CO2分子同士 の衝突によって CO₂分子内に双極子モーメントが 励起されることに由来するものである。図 4(a) は、CO2 コンティナム吸収を考慮した放射輸送方 程式を解き、電波からテラヘルツ波にかけての金 星の輝度温度を計算した結果である。輝度温度を 金星大気の気温鉛直分布 (図 4 (b)) と対応させれ ば、どの高度の大気から射出された熱放射が観測 されるのかが分かる。CO2のコンティナム吸収 は、周波数が高くなるに従って強くなる[7]。その 影響で、電波からテラヘルツ波にかけて 700 K か ら 200 K まで"連続的に"変化した輝度温度が観測 される。これは、電波~テラヘルツ波連続波を利 用した金星大気のリモートセンシングの有効性を 端的に表している:観測周波数を適切に設定する ことで雲頂以下の任意の高度を自在に観測できる のである。

3.2 野辺山ミリ波干渉計での観測

図5に野辺山ミリ波干渉計を利用して取得した 0.1 THz (103 GHz)連続波での金星輝度分布画像 を示した。金星ディスクの内部で輝度分布が 300-380 K の変動を示している。この非一様性は 過去の先行研究でも指摘されている[10]。本研究 では彼らの観測よりも高い空間分解能で観測を 行っており、その結果、先行研究で指摘されてい たよりも空間的に微細で、かつ、振幅の大きな輝 度温度変動が確認された。

本観測で得られた輝度温度 300-380 K は、雲層 下部にあたる高度 50 km 付近の気温に相当する。 金星の雲層は、0.1 THz 帯では光学的に極めて薄 いと考えられ、輝度温度変動の原因にはならな い[11]。雲の濃淡以外に、輝度温度の非一様性を 作るものとしては、気温分布の非一様性と、 0.1 THz 帯付近に複数の回転遷移線を持つ SO₂と H₂SO₄の偏在が考えられる。過去のパイオニア・ ビーナス探査機の降下プローブなどによる in-situ 観測から示唆されている高度 50 km 付近での気温

下の楕円は、合成ビームのサイズ(空間分解能)。金星の外側にある点線円は、干渉計の視野。

の水平面内変動は、10 K 程度と考えられる^[9]。 SO₂や H₂SO₄分布の非一様性に関しては、ベガ探 査機の降下プローブ^[12]やマゼラン探査機の電波 掩蔽観測^[13]で観測されている。しかし、それら の非一様性で再現可能な輝度温度の変動を放射輸 送方程式を解くことで見積もると、340-360 K 程 度の変動しか得られなかった。300-380 K という 観測結果を、気温分布と SO₂、H₂SO₄の分布で解 釈しようとすると、それらの分布に今までに観測 されている以上の非一様性を想定する必要があ る。現段階では、そうした想定を裏付ける材料が 不足しており、輝度温度明暗の生成物理を断定す ることはできない。しかし、本観測で示された輝 度温度非一様性は、これまで近赤外波長を利用し た雲の濃淡構造の観測でしか測る術がなかった高度 50 km 付近での金星大気構造に新たな知見を与 えるものであると言える。

3.3 テラヘルツ波連続波観測の今後

今後、周波数 10 GHz 程度の帯域で、分解能 1 GHz の広帯域連続波スペクトルを取得するよ うな観測が実現されれば非常に興味深い。その ような広帯域スペクトルを利用すれば、高度 40-60 km にかけての大気構造を 3 次元的に可視 化することができ、また、SO₂と H₂SO₄のコン ティナム吸収の周波数特性の差を利用して、互い の影響を分離できるであろう。

観測周波数を高くしていくと、次第に雲粒の吸 収・散乱効果も効いてくると考えられる。高周波 のテラヘルツ波での観測例を増やすことで、金星 の昼夜両面での下層雲の濃淡が観測可能になり、 雲の物理パラメータの3次元分布が得られると期 待される。ただし、テラヘルツ波における硫酸液滴 の光学特性を実験室で取得しておく必要がある。

4 金星中間圏大気循環の可視化

4.1 ¹²CO(J=1-0)吸収線の観測

テラヘルツ波での高分散分光観測を利用するこ とで、様々な大気微量成分の回転遷移線が観測で

きる。金星では、これまでに 0.1–0.5 THz の領域 で ¹²CO、¹³CO、H₂O、HDO、SO₂ などが観測され ている [14] [15]。これらの吸収線の中心周波数付近 で観測 される放射は、金星大気中間圏 (高度 70–100 km 付近)に荷重関数のピークを持つ。し たがって、3 で述べた熱放射連続波が雲よりも下 を見ているのに対し、吸収線の観測では、雲より も上の情報が得られることとなる。

著者らは、野辺山ミリ波干渉計を利用した ¹²CO (J=1-0, 115.271 GHz)のマッピング観測を 行った。使用した分光相関器の周波数分解能は 31.25 kHz (速度分解能 80 m/s)である。図 6 に、 金星の真昼と真夜中付近 (14 時と 23 時)から抽出 したスペクトルを示した。両スペクトルで、(1) 吸収の深さが異なり、また、(2)吸収線の中心周 波数もずれていることが分かる。(1)からは、高 度 100 km 付近では、夜面で昼面よりも CO が濃 く分布していることが判断できる。これは先行観 測結果[14]とも整合する。金星大気中の CO は、 昼面における CO₂の光解離で生成する。生成源の ない夜面で CO が濃いという結果は、CO を昼か ら夜に輸送するような昼夜間での大気循環が高度 100 km 付近で存在していることを示唆している。

この昼夜間循環を直接的に可視化するのが、前 述の(2)で示されているような、風速視線方向成 分によって生じるドップラーシフトである。図7 は、異なる観測日において、ドップラーシフト量 (観測直下点の吸収線中心周波数からの周波数差) をマッピングしたものである。2004 年 4 月や 2005 年 11 月のデータでは、金星の昼面でブルー

シフト、夜面でレッドシフトとなっている。昼夜 でドップラーシフトの向きが反転している様子か ら、昼から夜に流れる風の場が想像できる。この パターンは、スーパーローテーション(西向き帯 状流)によって作られるパターンとも同様である。 しかし、昼夜の位置関係が逆転している 2006 年 4月の結果を見れば、スーパーローテーションよ りも、昼夜循環が卓越していることが分かる。ま た、2005 年 12 月の観測では、局所的に夜から昼 に風が吹いているような領域も示されており、中 間圏の大気循環の非一様性を示唆する結果となっ ている。

4.2 テラヘルツ波吸収線観測の今後

本観測で見られたような高度 100 km 付近での 昼夜間循環と下層大気の運動を支配するスーパー ローテーションの間では、風速はどのように変遷 しているのであろうか?これは、スーパーロー テーションの形成メカニズムを議論する上でも重 要な疑問である。テラヘルツ波には、今回観測し た¹²CO 以外にも、複数の金星中間圏微量成分の 吸収線が存在する。それら異なる光学的厚みを持 つ複数の吸収線を併せて観測することで、中間圏 の風速鉛直分布が観測的に明らかになる。例とし て、異なる次数での CO 同位体回転遷移線を観測 した際の標準的な荷重関数を図 8 に示した。これ らの観測で、高度 80–100 km にかけての情報が

得られることが分かる。光学的厚みの異なる吸収 線を同時観測することは、分子混合比と気温の鉛 直分布をリトリーバルする際の精度を上げる観点 からも有意義である。

5 むすび

本文では、テラヘルツ波を利用したリモートセ ンシングが金星大気の研究に効果的であることを 述べた。詳細は以下のとおりである。

干渉計を利用した開口合成撮像をすることで、 テラヘルツ波でも惑星を空間分解する観測が実現 される(2章)。テラヘルツ波で観測される熱放 射は、金星の雲層下部から雲頂にかけての任意の 高度を昼夜関係なくリモートセンシングする唯一 無二の手段となる(3章)。また、テラヘルツ波 に複数存在する分子回転遷移線は、これまで可視 化する手段が極めて限られていた金星中間圏の大 気循環を把握するのに最適である(4章)。

謝辞

本文は、著者の学位論文を基に構成したもので ある。野辺山ミリ波干渉計での共同利用観測及び データ解析の議論に際しては、北村良実助教授 (JAXA)、はしもとじょーじ氏(神戸大学)、 中西康一郎氏(国立天文台)をはじめとして、多く の方々の協力・助言を頂いている。また、野辺山 ミリ波干渉計の運営スタッフの方々からも多大な サポートを頂いた。ここに感謝する。

参考文献

- Carlson, R. W., et al., "Variations in Venus cloud particle properties: A new view of Venus's cloud morphology as observed by Galileo Near-Infrared Mapping Spectrometer," Planet. Space Sci., 41, 477-485, 1993.
- 2 Thompson, A. R., J. M. Moran, and G. W. Swenson Jr., "Interferometry and synthesis in radio astronomy", Second edition, Germany, Wiley-VCH, 2001.
- 3 Butler, B. J., and T. S. Bastian, "Solar system objects", in Synthesis imaging in radio astronomy II, eds. G. B. Taylor, C. L. Carilli and R. A. Perley, San Francisco, Astronomical Society of the Pacific, 625-656, 1999.
- **4** Cornwell, T. J., "The application of closure phase to astronomical imaging", Science, 245, 263-269, 1989.
- 5 de Pater, I., "Radio images of the planets", Annu. Rev. Astron. Astrophysics, 28, 347-399, 1990.
- 6 Cornwell, T., and R. Braun, "Deconvolution", in Synthesis imaging in radio astronomy, eds. A. P. Richard, F. R. Schwab and A. H. Bridle, San Francisco, the Astronomical Society of the Pacific, 109-121, 1989.
- 7 Gruszka, M., and A. Borysow, "Roto-translational collision-induced absorption of CO₂ for the atmosphere of Venus at frequencies from 0 to 250 cm⁻¹, at temperatures from 200 to 800 K", Icarus, 129, 172-177, 1997.

- 8 Butler, B. J., et al., "Accurate and Consistent Microwave Observations of Venus and Their Implications", Icarus, 154, 226-238, 2001.
- **9** Seiff, A., et al., "Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude", Adv. Sp. Res., 5, 3-58, 1985.
- 10 de Pater, I., F. P. Schloerb, and A. Rudolph, "Venus imaged with the Hat Creek interferometer in the J=1-0 CO line", Icarus, 90, 282-298, 1991.
- 11 Fahd, A. K., and P. G. Steffes, "Laboratory measurement of the millimeter wave properties of liquid sulfuric acid", J. Geophys. Res., 96, 17471-17476, 1991.
- 12 Bertaux, J. L., et al., "VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220-400 nm) in the atmosphere of Venus (SO₂, aerosols, cloud structure)", J. Geophys. Res., 101, 12709-12746, 1996.
- 13 Kolodner, M. A., and P. G. Steffes, "The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements", Icarus, 132, 151-169, 1998.
- 14 Lellouch, E., et al., "Global circulation, thermal structure, and carbon monoxide distribution in Venus' mesosphere in 1991", Icarus, 110, 315-339, 1994.
- 15 Gurwell, M. A., et al., "SWAS observations of water vapor in the Venus mesosphere", Icarus, 188, 288-304, 2007.

