8 委託研究

8 Sponsered Research

8-1 テラヘルツ波帯遠隔イメージング技術の開発

8-1 Development of Remote Imaging Technologies at Terahertz Frequency

小田直樹 小宮山 進 ODA Naoki and KOMIYAMA Susumu

要旨

周波数領域 1-10 THz の応用として、災害現場等を含むセキュリティ分野での実時間イメージング が考えられている。著者は、画素数 320×240 非冷却赤外線アレイセンサを用いて、量子カスケード レーザからの 3.1 THz の線輻射を実時間で画像化することに日本で初めて成功した。その結果、同セ ンサの 3.1 THz での Noise Equivalent Power が 200-400 pW であることが分かった。この成果及び 今後の感度向上により、非冷却赤外線アレイセンサの用途拡大が期待される。

Terahertz (THz) radiation, 1-10 THz, has shown promise for security imaging application. For this application, real-time imaging technology will be highly desirable, which requires twodimensional array sensor. The author has succeeded in detecting 3.1 THz radiation from Quantum Cascade Laser (QCL) for the first time in Japan, using vanadium oxide (VOx) microbolometer focal plane array (FPA) of 320×240 with $23.5 \ \mu$ m pitch. Noise Equivalent Power of FPA at 3.1 THz is measured to be $200-400 \ pW$. The success in THz detection and further improvement in sensitivity will provide VOx microbolometer FPA with new applications.

[キーワード] マイクロボロメータ, 焦点面アレイ, テラヘルツ, 実時間画像 Microbolometer, Focal plane array, Terahertz, Real-time imaging

1 まえがき

テラヘルツ(THz)領域は、周波数 0.1~10 THz (波長 30 μm~3 mm)にまたがり、長波長のため 塵埃による散乱減光が可視光や赤外線より小さ く、災害現場における状況把握(生命体の捜索等) に貢献すると考えられる。状況把握は迅速でなけ ればならず、実時間イメージング技術が必須とな る。さらに同技術を実用化するには、言い換える と現場に役立つ THz 光源やカメラ部を設計する には、大気の吸収特性や生命体の分光特性の把握 が不可欠である。

本報告では、情報通信研究機構の高度通信・放

送研究開発に係る委託研究テーマの一つである、 THz 領域における実時間イメージング装置の概 念を述べた後、同装置のキーコンポーネントであ る 2 次元 Focal Plane Array (FPA)の現状の性能 に関する測定結果を報告する。また同装置の感度 を向上させる要素技術ついても述べる。

2 THz 実時間イメージング装置

2.1 装置の概要

図1に開発目標である THz 実時間イメージン グ装置の概要を示す。同装置は、パッシブイメー ジングカメラとアクティブイメージングカメラ及

び THz 光源で構成される。パッシブイメージン グカメラで 5 m ほどの距離から約 1 m 角の領域 をほぼ実時間で撮像し、同領域の中で特別に観測 したい約 10 cm 角の領域に THz 波を照射し、そ の散乱光をカメラで検出して詳細状況を把握す る。現在の運用イメージとして、可視光や赤外線 で見え難い災害現場の生命体を捜索することを考 えている。

2.2 THz 波に対する非冷却赤外線 アレイセンサの感度

パッシブイメージングカメラとアクティブイ メージングカメラに搭載するセンサに関しては、 2次元非冷却赤外線アレイセンサをベースにして、 THz 波により高い感度で感じるような工夫を凝 らすことで実現することを考えている。これにつ いては後で述べることにして、現状の波長 10 µm 帯用非冷却赤外線アレイセンサが THz 波に対し て感度を有するかどうかについて測定を行ったの で報告する。

図 2 に実験の配置を示す。THz 光源として量 子カスケードレーザ(QCL)[1] を、赤外線カメラ として画素数 320×240、画素ピッチ 23.5 µ m の 非冷却赤外線アレイセンサ HX0830 を搭載した TVS - 200EX を用いた[2]-[4]。同カメラのレンズ は波長 10 µm 帯用に設計されているので、レンズ を外して QCL からの THz 波を軸外し放物面鏡で

表1 QCL の諸元	
発振周波数	3.1 THz(波長 97µm)
動作温度	15 K
パルス幅	300 nsec
繰返し周期	1.07 msec
ピーク出力	31 mW
パワーメータ出力	8.7 μ W

アレイセンサ上に集光することにした。アレイセ ンサの前にはメタルメッシュフィルター (MMF) を置いて波長 70~105 μ mの THz 波のみを通し、 波長 10 μ m 帯を通さないようにした。表 1 に示 すように、QCL の発振周波数は 3.1 THz (波長 97 μ m)、duty cycle 0.03 %、ピーク出力 31 mW 及びパワーメータで測定した時間平均パワーは 8.7 μ W である。

QCL からの 3.1THz の線輻射の実時間画像 (320×240 で表示)を図 3 に、同図の縦線 2 に沿っ た強度分布を図 4 に示す。ここで、QCL のビー ムの像が細長い主な理由は、二つの軸外し放物面 鏡のアラインメントが完全でなく、直交方向の焦 点距離が異なるためである。しかしながら、像の 大きさがパワーメータの検出器の直径 2 mm とほ ぼ同じなので、今回得たデータから前述の非冷却 赤外線アレイセンサの雑音等価パワー (NEP: Noise Equivalent Power)を求めることができる。 像の広がりが半値の等高線の領域として 1139 画 素にわたっていること、MMF の透過率が 74 % 及びアレイセンサの真空パッケージの Ge 窓の透 過率が 26 %であること、また信号雑音比が 6~7 であることから、このサンプルの NEP が 200 -250 pW 程度であることが分かる。別のサンプル の場合、400 pW 程度であった。これらの値は、 画素ピッチ 37 μ m の 320×240 非冷却赤外線アレ イセンサの NEP 及び MIT のチームが得た NEP の値 300 pW と同等である[5][6]。NEP値 200 -400 pW を吸収率に換算すると 2-4 % に対応す る(後述の図 6 参照)。ここで、320×240 非冷却 赤外線アレイセンサの NEP は波長 10 μ m 帯にお いて約 10 pW であり、この値は吸収率 80 % に 対応する。

2.3 感度向上対策

THz 波に対して現状の非冷却赤外カメラの感 度を向上するためには、①アレイセンサの構造を 改良して感度を上げる、②アレイセンサのパッ ケージ窓の透過率を上げる、③画像を積分するこ とにより信号雑音比を改善することが挙げられ る。ここでは、①と②について、アイデアと途中 の成果を報告する。

図5に、現状の非冷却赤外線アレイセンサの画 素構造を大きく変更せずに THz での感度を向上 させるアイデアを示す[7]。同図で THz 検知用に 新たに加わった改良点は、ダイアフラムと庇の上 に点線で示した THz 吸収膜、実際には、金属薄 膜の形成である。これらの位置に金属薄膜を成膜 すると、Si 読出回路上の反射膜と光学的な干渉が 生じて共鳴吸収が起きる(光学的共振構造)。反射 膜と空洞を介して位置する金属薄膜の吸収につい ては、古くから文献が知られており、ここでは K.C.Liddiard の文献^[8]の(1)式を参考にする。空 洞の高さ 1.5 μm と反射膜のシート抵抗 0.09 Ω の 条件下で、波長 30 µm (10 THz) と 100 µm (3 THz) に対して、金属薄膜 (THz 吸収膜) のシー ト抵抗を変えて計算すると図6のような吸収特性 が得られる。同図を見て分るように、金属薄膜の シート抵抗を 20-60 Ω に設定すると波長 100 μm での感度が現状に比べて1けた近く向上すること が期待される。

次にアレイセンサの真空パッケージ窓材の透過 率を THz 領域で向上させるには、高抵抗 Si に無 反射コートを成膜したものが有力候補である^[9]。 図 7 はアレイセンサの真空パッケージの概念図で ある。波長 10 μm 帯においては Ge が最適である

が、この材料の3THz での透過率は、前述のよ うに、30%以下と非常に低い。この特性を改良す るため高抵抗 Si 基板の両面に厚さ 16 µm のパリ レンを成膜した結果、高い透過特性が得られるこ とが分った(図8)。この値は、現状のGe 窓の THz 透過率に比べ3倍強高い。今後、パリレン 膜を両面コートした高抵抗 Si を真空パッケージ の窓に適用する予定である。

3 むすび

著者達は、非冷却赤外線アレイセンサを用いて、 QCL からの THz 線輻射を実時間で撮像すること に国内で初めて成功し、この実験結果を基に現状 のアレイセンサの性能を定量的に導き出すことが できた。また本報告では、同アレイセンサの THz での感度向上のアイデアについて述べると ともに窓材の技術開発の成果を示した。

災害現場等で役に立つ THz 遠隔イメージング 技術の開発を進める際、THz 光源、アレイセン サやカメラの技術開発だけでなく、大気吸収や生 命体等に関する分光データを取得することが装置 設計にとって非常に重要である。今後、ハード ウェアの技術開発のみならず、これらのデータ ベースを充実させることにより委託研究を成功に 導いていく。

本研究成果は、情報通信研究機構の「高度通 信・放送研究開発に係る委託研究開発」の下で得 られた。このような研究機会を与えて頂いたこと に関し深く感謝する。

参考文献

 I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, "At the Dawn of a New Era in Terahertz Technology", Proceedings of the IEEE, Vol.95, pp.1611-1623, 2007.

- 2 日本電気株式会社誘導光電事業部のホームページ, http://www.nec.co.jp/geo/jp/products/hx0830.html
- 3 S. Tohyama, M. Miyoshi, S. Kurashina, N. Ito, T. Sasaki, A. Ajisawa, Y. Tanaka, K. Iida, A. Kawahara, and N. Oda, "New Thermally Isolated Pixel Structure for High-resolution (640×480) Uncooled Infrared FPAs", Optical Engineering, Vol.45, pp.014001-1–014001-10, 2006.
- 4 日本アビオニクス株式会社のホームページ, http://www.avio.co.jp/
- 5 関根徳彦,小田直樹,寶迫 巌, "非冷却赤外カメラによるテラヘルツ帯量子カスケードレーザ光検出", 2007 年春季第54 回応用物理学関係連合講演会講演予稿集, No.3, 28p-J-10, p.1174, 2007.
- 6 A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Real-Time Imaging Using a 4.3-THz Quantum Cascade Laser and a 320×240 Microbolometer Focal-Plane Array", IEEE Photonics Technology Letters, Vol.18, pp.1415-1417, 2006.
- 7 小田直樹,小宮山進,寶迫巌,"ボロメータ型 THz 波検出器",特許出願,2007年3月.
- **8** K. C. Liddiard, "Application of Interferometric Enhancement to Self-Absorbing Thin Film Thermal IR", Infrared Phys., Vol.34, pp.379-387, 1993.
- 9 A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yngvesson, "An Anti-Reflection Coating for Silicon Optics at Terahertz Frequencies", IEEE Microwave and Guided Wave Letters, Vol.10, pp.264-266, 2000.

小田直樹

日本電気株式会社誘導光電事業部 理学博士 赤外検知技術 小**宮山 進** 東京大学大学院総合文化研究科相関基礎科学系 理学博士物性物理学

